

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Please cite this paper as:

Sai, C., Davydenko, A., & Shcherbakov, M. (November 23-24, 2018). Data schemas for forecasting (with examples in R). Seventh International

Conference on System Modelling & Advancement on Research Trends, 145-149. Moradabad, India.

Data Schemas for Forecasting (with examples in R)

Sai Van Cuong

CAD Department

Volgograd State Technical University

Volgograd, Russia
svcuonghvktqs@gmail.com

Dr. Andrey Davydenko

JSC CSBI

Saint-Petersburg

andrey@live.co.uk

Prof. Maxim Shcherbakov

CAD Department

Volgograd State Technical University

Volgograd, Russia
maxim.shcherbakov@gmail.com

Abstract—Evaluation of forecasting performance using real-

world data is inevitably connected with the question of how to

store actuals and forecasts in a convenient way. The issue gets

complicated when it comes to working with rolling-origin out-of-

sample forecasts calculated for many time series. This setup can

be met in both research tasks (such as forecasting competitions

or when some new method is proposed) and in practical settings.

When designing data schemas for forecasting it is important to

provide access to the information needed for exploratory time

series analysis and accuracy evaluation. We found that existing

approaches to store forecasting data often cannot be applied

efficiently as they are either not flexible enough or they require

too much resources to implement and maintain the data storage.

Here we propose a flexible yet simple way of keeping forecasting

data allowing the storage and exchange of actuals, forecasts, and

other relevant information. We also present an R package that

helps perform exploratory data analysis and accuracy evaluation

based on the data schemas proposed.

Keywords—Forecasting, forecasting methods, forecasting

accuracy, forecasting competition, data visualization, R packages

I. INTRODUCTION

Nowadays advanced forecasting methods are used in
different fields ranging from weather forecasting to inventory
control. Advances in hardware, software, and mathematical
methods have made it possible to use forecasting algorithms in
various industries, and the importance of accurate forecasts
rises as companies are trying to become more efficient and
competitive.

In order to know how good a forecasting method is we
need to compare forecasts being produced against actuals being
obtained. The aim is to see how well a method can reproduce
actuals. Thus, we need empirical evaluation in order to assess
the applicability and the effectiveness of a forecasting method.

Thus far, various forecasting competitions have been held
to empirically evaluate forecasting performance of different
methods. The most famous competition at present is, perhaps,
the M3 competition [6][9] where the accuracy of various

methods have been assessed for different types of time series
and different forecasting horizons using various metrics. The
question of choosing a good metric for forecast evaluation is
itself still a difficult one [8] and has been attracting the
attention of researches for quite some time. But we here will
focus not on the metrics, but on the technical issues of keeping
actuals and forecasts in a convenient way so that proper
metrics could be easily applied.

The issue we address here is how to store available data in
order to facilitate the evaluation of forecasts.

We look at some existing approaches that implement
forecasting data storage and show that some improvements are
needed. In particular, it's important to find efficient ways of
how to store rolling-origin forecasts with different horizons
plus additional info such as confidence intervals, or, perhaps,
textual data describing the reasons for adjustments, etc.

We start with describing typical settings of obtaining and
evaluating forecasts and then switch to how to organize a data
structure that would meet the requirements we set above. We
then describe some examples and show how such structures
can be used implemented and used. The data structures we
describe can be used in different programming environments
regardless of a database management system or scripting
language.

II. TASKS AND TERMS

We consider the following setup.

1) Suppose we have a set of time series. In general, the set
can contain from one to a relatively large number of series
(say, tens of thousands).

2) For each time series we want to store actuals and to
calculate and store forecasts. In particular, it is needed to store
out-of-sample forecasts produced from different origins
(rolling-origin forecasts) and with different horizons and,
perhaps, using different methods. We also may want not only
to store point forecasts, but prediction intervals (PIs), density

mailto:andrey@live.co.uk

forecasts, and additional information related to forecasting
process (such as model coefficients, reasons for judgmental
adjustments, etc.).

3) We assume that both actuals and forecasts may be
frequently updated as new data becomes available.

Given the above settings, we need to have a convenient
means to store and access (and, perhaps, to distribute or
exchange) forecasting data including actuals, forecasts, and the
related information. We would like to find a means that would
be fast, cross-platform, easy to learn and to implement.

Eventually, the storage of forecasting data is needed to
perform adequate out-of-sample evaluation of forecasting
accuracy. In case of conducting forecasting competitions, a
well-defined approach to store forecasting data should enable a
credible approach for forecasting accuracy comparisons.

Some important terms we will be using are clarified below.

Forecast origin – the most recent historical period for
which data is used to build a forecasting model. The next time
period is the first forecast period [2].

Forecast horizon – The number of periods from the
forecast origin to the end of the time period being forecast [1].

Prediction interval (PIs) – The bounds within which future
observed values are expected to fall, given a specified level of
confidence. For example, a 95% prediction interval is expected
to contain the actual forecast 95% of the time. However,
estimated prediction intervals are typically too narrow for
quantitative and judgmental forecasting methods [1].

III. EXISTING APPROACHES USED IN FORECASTING

COMPETITIONS

A number of well-known forecasting competitions have

been conducted up to this moment (including M1, M2, M3,

M4, and others) [4]. These competitions have had an

enormous influence on the field of forecasting focusing on

what models produced good forecasts, rather than on the

mathematical properties of those models.

For some of the competitions the data is available in the

form of R packages:

Mcomp: Data from the M-competition and M3-

competition.

M4comp2018: Data from the M4-competition.

Tcomp: Data from the Kaggle tourism competition.

tscompdata: Data from the NN3 and NN5 competitions.

The above packages use the following approach to store

forecasting data:

1) Time series are provided as a list of objects. Each

series within this list is of class Mdata withh the following

structure show in Table I:

TABLE I. TIME SERIES STRUCTRE USED IN AVAILABLE R

PACKAGES

Field name Description

sn Name of the series

st Series number and period. For example "Y1" denotes first

yearly series, "Q20" denotes 20th quarterly series and so on

n The number of observations in the time series

h The number of required forecasts

period Interval of the time series. Possible values are "YEARLY",

"QUARTERLY", "MONTHLY" & "OTHER"

type The type of series. Possible values are "DEMOGR",

"INDUST", "MACRO1", "MACRO2", "MICRO1",

"MICRO2" & "MICRO3"

description A short description of the time series

x A time series of length n (the historical data)

xx A time series of length h (the future data)

2) Forecast are provided as a list of dataframes. Each

list element is the result of one forecasting method. The

dataframe then has the following structure: Each row is the

forecast of one series. Rows are named accordingly. In total

there are 18 columns, i.e., 18 forecasts. If fewer forecasts than

18 exist, the row is filled up with NA values.

IV. NEW DATA SCHEMAS FOR FORECASTING TASKS

Here were describe our approach to store forecasting data
including actuals and forecasts in accordance with what was
said in Section II (‘Tasks and Terms’).

 The approach we describe below is convenient when we
want to store forecasting data in a relational database (RDB) or
as a portable table file (e.g., ‘csv’ or Excel). RDBs are very
widely used, many companies already have an IT infrastructure
for storing their data in RDB. Thus, this format is most likely
to be adopted in practice (compared to alternatives, such as
JSON/XML, etc.).

A. Time Series Table Schemas (TSTS)

Here we assume each observation is stored in a table as a

separate record (line). The table to store such records has the

following fields (Table II).

TABLE II. TIMES SERIES TABLE SCHEMA (TSTS)

Field name

(column

name)

Description Examples

*series_id

Time series identifier - a
unique name that identifies a

time series

“Y1”

*timestamp
Any representation of the
period to which the

observation relates.

“01.01.1997” in case of
daily data

“Sep 1997” in case of

monthly data
“Week 49, 1997” in

case of weekly data

value The value observed “1000”

* the key (the unique value that should not duplicated) for this table schema is

<series_id, timestamp>. In other words, we cannot have two (or more) records

in a table relating to the same time series and the same period of observation
(timestamp.

We may have additional fields (columns) in this table or
additional table specifying the features of time series.
However, the above schema includes the fields that are
necessary for further processing of time series data. Here we do
not impose restrictions on data types.

If some observation is missing, the corresponding table line
can be omitted or corresponding value can be denoted as ‘NA’.
Observation can also contain censored data, etc., which can
also be represented by additional agreements, but here we will
not look at the details of such cases. Here we aim to set out a
general approach for storing and handling forecasting data.

B. RDB Forecast Schema

 One possible approach to store forecasts is to use the
schema shown in Table III. Each forecasting result (be it a
point forecast or a limit of a prediction interval) produced with
a forecasting method is stored as a separate record (line) in a
table. The advantage of this approach is that we can use any
number of forecast result attributes without the need to change
the fields of the table. The disadvantage is, however, that such
tables will be more difficult to handle compared with the
alternative schema described below.

TABLE III. FORECAST DYNAMIC TABLE SCHEMAS (FDTS)

Column

name
Description Examples

*series_id

Time series ID for

which the forecast was

calculated (see Table 1,
‘RDB Time Series

Schema’)

“Y1”

*method_id

Method identifier - a
unique name that

identifies a method by

which the forecasting
result was calculated

“auto.arima”

*period_time

stamp

Any representation of

the period to which the
forecast relates.

“01.01.1997”

*origin_time

stamp

Origin of the forecast

(provided in a
timestamp format)

“29.12.1996”

*horizon Forecast horizon “3”

*variable

The name of the

variable that describes
the forecasting result.

forecast” for point forecast
“lo95” for the lower limit

for the 95% prediction
interval

“hi95” for the upper limit

for the 95% prediction
interval

“model name” to describe

the model used when
finding the best model

accoriding to Akaike’s

Information Criterion
“error” to store messages

describing if anything went

wrong
“warnings”

etc.

value
The value of the

variable

“1000.55” for [variable] =
“forecast”

“ARIMA(1,0,0)” for

[variable] = “model name”
“Not enough observations”

for [variable] = “error”

Column

name
Description Examples

etc.

* the key (the unique value that should not duplicated) for this table schema is

<series_id, method_id, forecast_timestamp, origin_timestamp, horizon,
variable>.

Here, for simplicity, we also assume that all the fields are
stored as character data or text. Just as was said for the time
series table, we may have additional fields for the forecasts
table.

The two schemas described above assume that

 We need to ensure that there are no two or more
records in a table having the same key

 Values in “timestamp” field of the Time Series
Schema are constructed using the same rules as the values in
“origin_timestamp” and “period_timestamp” fields.

 Adding or deleting records to tables should be treated
as a single transaction, so it is advisable to use stored
procedures to implement such operations.

Examples:

M3 competition data represented using the TSTS:

series_id category value timestamp

Y1 MICRO 940.66 1975

Y1 MICRO 1084.86 1976

Y1 MICRO 1244.98 1977

Y1 MICRO 1445.02 1978

Y1 MICRO 1683.17 1979

Y1 MICRO 2038.15 1980

Y1 MICRO 2342.52 1981

Y1 MICRO 2602.45 1982

Y1 MICRO 2927.87 1983

Y1 MICRO 3103.96 1984

M3 competition represented using the FDTS:

series method timestamp origin_timestamp variable value

Y1 ARIMA 1989 1988 forecast 5486.10

Y1 ARIMA 1990 1988 forecast 6035.21

Y1 ARIMA 1991 1988 forecast 6584.32

Y1 ARIMA 1992 1988 forecast 7133.43

Y1 ARIMA 1993 1988 forecast 7682.54

Y1 ARIMA 1994 1988 forecast 8231.65

Y2 ARIMA 1989 1988 forecast 4230.00

Y2 ARIMA 1990 1988 forecast 4230.00

Y2 ARIMA 1991 1988 forecast 4230.00

Y2 ARIMA 1992 1988 forecast 4230.00

Btw, we can also expand it for rolling-origin forecasts and

for CIs.

C. Forecast Tables Schema (FTS)

If we want our data to be easier to read, one possible

format is to re-shape the FDTS in such way that each line

corresponds to all the forecasting results obtained for one

series using one method for one horizon and for one specified

origin. The output table to store forecasting result can contain

the fields shown in Table IV

TABLE IV. FORECAST TABLE SCHEMA

series_id* period_timest
amp*

origin_time
stamp*

horizon* method_i
d*

forecast lo95 hi95

* the key (the unique value that should not duplicated) for this table schema is

<series_id, method_id, forecast_timestamp, origin_timestamp, horizon>. In

other words, we cannot have two (or more) records in a table

 This format has its advantages and disadvantages. One

advantage is that it allows choosing different types for

different variables (e.g., ‘double’ for forecasts and ‘text’ for

method_id. However, this approach is not as flexible as the

one we described earlier: when adding new types of variables

(say, ‘lo95’ and ‘hi95’), adding new columns to the table will

be required.

Example:

series method timestamp origin_timestamp forecast Lo95 Hi95

Y1 ARIMA 1989 1988 5486.10 5298.756 5673.444

Y1 ARIMA 1990 1988 6035.21 5616.295 6454.125

Y1 ARIMA 1991 1988 6584.32 5883.342 7285.298

Y1 ARIMA 1992 1988 7133.43 6107.303 8159.557

Y1 ARIMA 1993 1988 7682.54 6293.158 9071.922

Y1 ARIMA 1994 1988 8231.65 6444.500 10018.800

Y2 ARIMA 1989 1988 4230.00 2786.439 5673.561

Y2 ARIMA 1990 1988 4230.00 2188.496 6271.504

Y2 ARIMA 1991 1988 4230.00 1729.678 6730.322

Y2 ARIMA 1992 1988 4230.00 1342.877 7117.123

It is possible to make this format more flexible if some of

the columns will contain a JSON or XML representation of a

list of variables. E.g., we can have a column named “method

params” containing an XML representation of a list of

parameters.

V. EXAMPLES IN R

 Here we show how we can use the new data schemas in
order to easily filter/evaluate accuracy and perform exploratory
data analysis.

Let’s assume our data is loaded into two dataframes:

ts - time series data provided as a data frame using the
Time Series Table Schema (TSTS)

fc - forecasts data provided as a data frame using the
Forecasts Table Schema (FTS)

A. Exploratory analysis of forecast

a) Prediction-Realization Diagram

We can use the following code to see how forecasts

correlate with actuals:

plotPRD(fc)

This function produces a ggplot graph shown in Fig. 1.

This graph can help identify outliers and check the correctness

of the data including actuals and forecasts.

Fig. 1. Prediction-Realization Diagram of forecasts from different forecasting
methods

b) Fanchart

Using this function we can see how forecasts made for a

specified origin correspond to actuals (Fig. 2)

plotSeries(ts, fc, series_id=”M8”, origin=”Jun 1989”)

Fig. 2. Fanchart of time series with intervals 95 and 80%

B. Accuracy

calculateMAPEs(fc)

Fig. 3. Mean absolute percentage error for different forecasting methods and

different horizons

C. Validation of PIs

validatePIs(fc)

Fig. 4. Bar plot of percentage with errors for different horizons

VI. CONCLUSIONS

Having forecasting data stored in a well-defined way is
crucial for monitoring and evaluating forecasting accuracy. In
spite of the fact that a number of large-scale forecasting
competitions have been conducted, at present there is no
unified approach of how to store forecasting data. In this paper
we aimed to present a data schema that is suitable for keeping
forecasting data in a table as a part of a RDB or as a portable
file.

We also showed how to implement various algorithms for
accuracy evaluation based on the data structures proposed. We
provided some examples in R, but, analogously, other existing
languages (such as Python) can also be used to perform tasks
such as data exploratory analysis and accuracy evaluation.
Hopefully, the solutions presented will be flexible enough to be
applied by academics and researchers and also by practitioners.
One aim of the paper is to highlight the need of separating the
forecasting data from the algorithms and tools for handling
data (such as tools for viewing time series and forecasting
results).

ACKNOWLEDGMENT

The reported study was supported by RFBR research
projects 16-37-60066 mol_a_dk.

REFERENCES

[1] J. Scott Armstrong, “Principles of forecasting: A handbook for

Researchers and Practitioners,” University of Pennsylvania, USA, 2001.

[2] http://www.moneycontrol.com/glossary/trading-terms/forecast-
origin_2465.html.

[3] Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P.,
Janovsky, T. A., & Kamaev, V. A. (2013). A survey of forecast error
measures. World Applied Sciences Journal, 24, 171–176.

[4] https://en.wikipedia.org/wiki/Makridakis_Competitions.

[5] Rob J. Hyndman, Anne B. Koehler, “Another look at measures of
forecast accuracy,” in International Journal of Forecasting, 2006, pp.
679-688.

[6] https://forecasters.org/resources/time-series-data/m-competition/

[7] Rob J. Hyndman, Yeasmin Khandakar, “Automatic Time Series
Forecasting: The forecast pacakge for R,” Journal of statistical software,
vol. 27, 2008.

[8] Andrey Davydenko, Robert Fildes, “Measuring forecasting accuracy:
The case of judgmental adjustments to SKU-level demand forecast,”
International Journal of Forecasting, 2013, pp. 510-522.

[9] Spyros Makridakis, Michele Hibon, “The M3-Competition: results,
concluions and implications,” International Journal of Forecasting, 2000,
pp. 451-476.

[10] Owoeye. D, M. Shcherbakov and V. Kamaev, “A photovoltaic output
backcast and forecast method based on cloud cover and historical data,”
In the proceedings of the The Sixth IASTED Asian Conference on
Power and Energy Sysstems, 2013, pp. 28-31.

