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Abstract—Evaluation of forecasting performance using real-

world data is inevitably connected with the question of how to 

store actuals and forecasts in a convenient way. The issue gets 

complicated when it comes to working with rolling-origin out-of-

sample forecasts calculated for many time series. This setup can 

be met in both research tasks (such as forecasting competitions 

or when some new method is proposed) and in practical settings. 

When designing data schemas for forecasting it is important to 

provide access to the information needed for exploratory time 

series analysis and accuracy evaluation. We found that existing 

approaches to store forecasting data often cannot be applied 

efficiently as they are either not flexible enough or they require 

too much resources to implement and maintain the data storage. 

Here we propose a flexible yet simple way of keeping forecasting 

data allowing the storage and exchange of actuals, forecasts, and 

other relevant information. We also present an R package that 

helps perform exploratory data analysis and accuracy evaluation 

based on the data schemas proposed. 
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I. INTRODUCTION 

Nowadays advanced forecasting methods are used in 
different fields ranging from weather forecasting to inventory 
control. Advances in hardware, software, and mathematical 
methods have made it possible to use forecasting algorithms in 
various industries, and the importance of accurate forecasts 
rises as companies are trying to become more efficient and 
competitive. 

In order to know how good a forecasting method is we 
need to compare forecasts being produced against actuals being 
obtained. The aim is to see how well a method can reproduce 
actuals. Thus, we need empirical evaluation in order to assess 
the applicability and the effectiveness of a forecasting method. 

Thus far, various forecasting competitions have been held 
to empirically evaluate forecasting performance of different 
methods. The most famous competition at present is, perhaps, 
the M3 competition [6][9] where the accuracy of various 

methods have been assessed for different types of time series 
and different forecasting horizons using various metrics. The 
question of choosing a good metric for forecast evaluation is 
itself still a difficult one [8] and has been attracting the 
attention of researches for quite some time. But we here will 
focus not on the metrics, but on the technical issues of keeping 
actuals and forecasts in a convenient way so that proper 
metrics could be easily applied. 

The issue we address here is how to store available data in 
order to facilitate the evaluation of forecasts. 

We look at some existing approaches that implement 
forecasting data storage and show that some improvements are 
needed. In particular, it's important to find efficient ways of 
how to store rolling-origin forecasts with different horizons 
plus additional info such as confidence intervals, or, perhaps, 
textual data describing the reasons for adjustments, etc. 

We start with describing typical settings of obtaining and 
evaluating forecasts and then switch to how to organize a data 
structure that would meet the requirements we set above. We 
then describe some examples and show how such structures 
can be used implemented and used. The data structures we 
describe can be used in different programming environments 
regardless of a database management system or scripting 
language. 

II. TASKS AND TERMS 

We consider the following setup.  

1) Suppose we have a set of time series. In general, the set 
can contain from one to a relatively large number of series 
(say, tens of thousands). 

2) For each time series we want to store actuals and to 
calculate and store forecasts. In particular, it is needed to store 
out-of-sample forecasts produced from different origins 
(rolling-origin forecasts) and with different horizons and, 
perhaps, using different methods. We also may want not only 
to store point forecasts, but prediction intervals (PIs), density 

mailto:andrey@live.co.uk


 

 

forecasts, and additional information related to forecasting 
process (such as model coefficients, reasons for judgmental 
adjustments, etc.). 

3) We assume that both actuals and forecasts may be 
frequently updated as new data becomes available. 

Given the above settings, we need to have a convenient 
means to store and access (and, perhaps, to distribute or 
exchange) forecasting data including actuals, forecasts, and the 
related information. We would like to find a means that would 
be fast, cross-platform, easy to learn and to implement. 

Eventually, the storage of forecasting data is needed to 
perform adequate out-of-sample evaluation of forecasting 
accuracy. In case of conducting forecasting competitions, a 
well-defined approach to store forecasting data should enable a 
credible approach for forecasting accuracy comparisons. 

Some important terms we will be using are clarified below. 

Forecast origin – the most recent historical period for 
which data is used to build a forecasting model. The next time 
period is the first forecast period [2]. 

Forecast horizon – The number of periods from the 
forecast origin to the end of the time period being forecast [1]. 

Prediction interval (PIs) – The bounds within which future 
observed values are expected to fall, given a specified level of 
confidence. For example, a 95% prediction interval is expected 
to contain the actual forecast 95% of the time. However, 
estimated prediction intervals are typically too narrow for 
quantitative and judgmental forecasting methods [1]. 

III. EXISTING APPROACHES USED IN FORECASTING 

COMPETITIONS 

A number of well-known forecasting competitions have 

been conducted up to this moment (including M1, M2, M3, 

M4, and others) [4]. These competitions have had an 

enormous influence on the field of forecasting focusing on 

what models produced good forecasts, rather than on the 

mathematical properties of those models. 

For some of the competitions the data is available in the 

form of R packages: 

Mcomp: Data from the M-competition and M3-

competition. 

M4comp2018: Data from the M4-competition. 

Tcomp: Data from the Kaggle tourism competition. 

tscompdata: Data from the NN3 and NN5 competitions. 

The above packages use the following approach to store 

forecasting data: 

1) Time series are provided as a list of objects. Each 

series within this list is of class Mdata withh the following 

structure show in Table I: 

TABLE I.  TIME SERIES STRUCTRE USED IN AVAILABLE R 

PACKAGES 

Field name Description 

sn Name of the series 

st Series number and period. For example "Y1" denotes first 

yearly series, "Q20" denotes 20th quarterly series and so on 

n The number of observations in the time series 

h The number of required forecasts 

period Interval of the time series. Possible values are "YEARLY", 

"QUARTERLY", "MONTHLY" & "OTHER" 

type The type of series. Possible values are "DEMOGR", 

"INDUST", "MACRO1", "MACRO2", "MICRO1", 

"MICRO2" & "MICRO3" 

description A short description of the time series 

x A time series of length n (the historical data) 

xx A time series of length h (the future data) 

 

2) Forecast are provided as a list of dataframes. Each 

list element is the result of one forecasting method. The 

dataframe then has the following structure: Each row is the 

forecast of one series. Rows are named accordingly. In total 

there are 18 columns, i.e., 18 forecasts. If fewer forecasts than 

18 exist, the row is filled up with NA values. 

IV. NEW DATA SCHEMAS FOR FORECASTING TASKS 

Here were describe our approach to store forecasting data 
including actuals and forecasts in accordance with what was 
said in Section II (‘Tasks and Terms’). 

 The approach we describe below is convenient when we 
want to store forecasting data in a relational database (RDB) or 
as a portable table file (e.g., ‘csv’ or Excel). RDBs are very 
widely used, many companies already have an IT infrastructure 
for storing their data in RDB. Thus, this format is most likely 
to be adopted in practice  (compared to alternatives, such as 
JSON/XML, etc.). 

A. Time Series Table Schemas (TSTS) 

 

Here we assume each observation is stored in a table as a 

separate record (line). The table to store such records has the 

following fields (Table II). 

TABLE II.  TIMES SERIES TABLE SCHEMA (TSTS) 

Field name 

(column 

name) 

Description Examples 

*series_id 

Time series identifier - a 
unique name that identifies a 

time series 

“Y1” 

*timestamp 
Any representation of the 
period to which the 

observation relates. 

“01.01.1997” in case of 
daily data 

“Sep 1997” in case of 

monthly data 
“Week 49, 1997” in 

case of weekly data 

value The value observed “1000” 

* the key (the unique value that should not duplicated) for this table schema is 

<series_id, timestamp>. In other words, we cannot have two (or more) records 

in a table relating to the same time series and the same period of observation 
(timestamp. 

We may have additional fields (columns) in this table or 
additional table specifying the features of time series. 
However, the above schema includes the fields that are 
necessary for further processing of time series data. Here we do 
not impose restrictions on data types. 



 

 

If some observation is missing, the corresponding table line 
can be omitted or corresponding value can be denoted as ‘NA’. 
Observation can also contain censored data, etc., which can 
also be represented by additional agreements, but here we will 
not look at the details of such cases. Here we aim to set out a 
general approach for storing and handling forecasting data. 

 

B. RDB Forecast Schema 

 

 One possible approach to store forecasts is to use the 
schema shown in Table III. Each forecasting result (be it a 
point forecast or a limit of a prediction interval) produced with 
a forecasting method is stored as a separate record (line) in a 
table. The advantage of this approach is that we can use any 
number of forecast result attributes without the need to change 
the fields of the table. The disadvantage is, however, that such 
tables will be more difficult to handle compared with the 
alternative schema described below. 

TABLE III.  FORECAST DYNAMIC TABLE SCHEMAS (FDTS) 

Column 

name 
Description Examples 

*series_id 

Time series ID for 

which the forecast was 

calculated (see Table 1, 
‘RDB Time Series 

Schema’) 

“Y1” 

*method_id 

Method identifier - a 
unique name that 

identifies a method by 

which the forecasting 
result was calculated 

“auto.arima” 

*period_time

stamp 

Any representation of 

the period to which the 
forecast relates. 

“01.01.1997” 

*origin_time

stamp 

Origin of the forecast 

(provided in a 
timestamp format) 

“29.12.1996” 

*horizon Forecast horizon “3” 

*variable 

The name of the 

variable that describes 
the forecasting result. 

forecast” for point forecast 
“lo95” for the lower limit 

for the 95% prediction 
interval 

“hi95” for the upper limit 

for the 95% prediction 
interval 

“model name” to describe 

the model used when 
finding the best model 

accoriding to Akaike’s 

Information Criterion 
“error” to store messages 

describing if anything went 

wrong 
“warnings” 

etc. 

value 
The value of the 

variable 

“1000.55” for [variable] = 
“forecast” 

“ARIMA(1,0,0)” for 

[variable] = “model name” 
“Not enough observations” 

for [variable] = “error” 

Column 

name 
Description Examples 

etc. 

* the key (the unique value that should not duplicated) for this table schema is 

<series_id, method_id, forecast_timestamp, origin_timestamp, horizon, 
variable>.  

Here, for simplicity, we also assume that all the fields are 
stored as character data or text. Just as was said for the time 
series table, we may have additional fields for the forecasts 
table. 

The two schemas described above assume that 

 We need to ensure that there are no two or more 
records in a table having the same key  

 Values in “timestamp” field of the Time Series 
Schema are constructed using the same rules as the values in 
“origin_timestamp” and “period_timestamp” fields.  

 Adding or deleting records to tables should be treated 
as a single transaction, so it is advisable to use stored 
procedures to implement such operations. 

Examples: 

M3 competition data represented using the TSTS: 
 

series_id category value timestamp 

Y1 MICRO 940.66 1975 

Y1 MICRO 1084.86 1976 

Y1 MICRO 1244.98 1977 

Y1 MICRO 1445.02 1978 

Y1 MICRO 1683.17 1979 

Y1 MICRO 2038.15 1980 

Y1 MICRO 2342.52 1981 

Y1 MICRO 2602.45 1982 

Y1 MICRO 2927.87 1983 

Y1 MICRO 3103.96 1984 

 

 

M3 competition represented using the FDTS: 

 
series method timestamp origin_timestamp variable value 

Y1 ARIMA 1989 1988 forecast 5486.10 

Y1 ARIMA 1990 1988 forecast 6035.21 

Y1 ARIMA 1991 1988 forecast 6584.32 

Y1 ARIMA 1992 1988 forecast 7133.43 

Y1 ARIMA 1993 1988 forecast 7682.54 

Y1 ARIMA 1994 1988 forecast 8231.65 

Y2 ARIMA 1989 1988 forecast 4230.00 

Y2 ARIMA 1990 1988 forecast 4230.00 

Y2 ARIMA 1991 1988 forecast 4230.00 

Y2 ARIMA 1992 1988 forecast 4230.00 

 

Btw, we can also expand it for rolling-origin forecasts and 

for CIs. 



 

 

C. Forecast Tables Schema (FTS) 

If we want our data to be easier to read, one possible 

format is to re-shape the FDTS in such way that each line 

corresponds to all the forecasting results obtained for one 

series using one method for one horizon and for one specified 

origin. The output table to store forecasting result can contain 

the fields shown in Table IV 

TABLE IV.  FORECAST TABLE SCHEMA 

series_id* period_timest
amp* 

origin_time
stamp* 

horizon* method_i
d* 

forecast lo95 hi95 

        

  
* the key (the unique value that should not duplicated) for this table schema is 

<series_id, method_id, forecast_timestamp, origin_timestamp, horizon>. In 

other words, we cannot have two (or more) records in a table 

 

 This format has its advantages and disadvantages. One 

advantage is that it allows choosing different types for 

different variables (e.g., ‘double’ for forecasts and ‘text’ for 

method_id. However, this approach is not as flexible as the 

one we described earlier: when adding new types of variables 

(say, ‘lo95’ and ‘hi95’), adding new columns to the table will 

be required. 

Example: 
 

series method timestamp origin_timestamp forecast Lo95 Hi95 

Y1 ARIMA 1989 1988 5486.10 5298.756 5673.444 

Y1 ARIMA 1990 1988 6035.21 5616.295 6454.125 

Y1 ARIMA 1991 1988 6584.32 5883.342 7285.298 

Y1 ARIMA 1992 1988 7133.43 6107.303 8159.557 

Y1 ARIMA 1993 1988 7682.54 6293.158 9071.922 

Y1 ARIMA 1994 1988 8231.65 6444.500 10018.800 

Y2 ARIMA 1989 1988 4230.00 2786.439 5673.561 

Y2 ARIMA 1990 1988 4230.00 2188.496 6271.504 

Y2 ARIMA 1991 1988 4230.00 1729.678 6730.322 

Y2 ARIMA 1992 1988 4230.00 1342.877 7117.123 

 

 

It is possible to make this format more flexible if some of 

the columns will contain a JSON or XML representation of a 

list of variables. E.g., we can have a column named “method 

params” containing an XML representation of a list of 

parameters. 

 

V. EXAMPLES IN R 

 
 Here we show how we can use the new data schemas in 
order to easily filter/evaluate accuracy and perform exploratory 
data analysis. 

Let’s assume our data is loaded into two dataframes: 

ts - time series data provided as a data frame using the 
Time Series Table Schema (TSTS) 

fc - forecasts data provided as a data frame using the 
Forecasts Table Schema (FTS) 

 

A. Exploratory analysis of forecast 

 

a) Prediction-Realization Diagram 

 

We can use the following code to see how forecasts 

correlate with actuals:  

plotPRD( fc) 

This function produces a ggplot graph shown in Fig. 1. 

This graph can help identify outliers and check the correctness 

of the data including actuals and forecasts. 

 

 

Fig. 1. Prediction-Realization Diagram of forecasts from different forecasting 
methods 

b) Fanchart 

 

Using this function we can see how forecasts made for a 

specified origin correspond to actuals (Fig. 2) 

plotSeries(ts, fc, series_id=”M8”, origin=”Jun 1989”) 

 

 

 

Fig. 2. Fanchart of time series with intervals 95 and 80% 

B. Accuracy 

calculateMAPEs(fc) 

 



 

 

 
 

 
Fig. 3. Mean absolute percentage error for different forecasting methods and 

different horizons 

C. Validation of PIs 

validatePIs(fc) 

 

 

 

 

Fig. 4. Bar plot of percentage with errors for different horizons 

 

VI. CONCLUSIONS 

Having forecasting data stored in a well-defined way is 
crucial for monitoring and evaluating forecasting accuracy. In 
spite of the fact that a number of large-scale forecasting 
competitions have been conducted, at present there is no 
unified approach of how to store forecasting data. In this paper 
we aimed to present a data schema that is suitable for keeping 
forecasting data in a table as a part of a RDB or as a portable 
file. 

We also showed how to implement various algorithms for 
accuracy evaluation based on the data structures proposed. We 
provided some examples in R, but, analogously, other existing 
languages (such as Python) can also be used to perform tasks 
such as data exploratory analysis and accuracy evaluation. 
Hopefully, the solutions presented will be flexible enough to be 
applied by academics and researchers and also by practitioners. 
One aim of the paper is to highlight the need of separating the 
forecasting data from the algorithms and tools for handling 
data (such as tools for viewing time series and forecasting 
results). 
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