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Forecast Error Measures: Critical Review and Practical Recommendations 

By Andrey Davydenko and Robert Fildes 

 

1. Introduction 

 

The choice of a measure to assess the accuracy of forecasts across time series is of wide practical 

importance, since the forecasting function is often evaluated using inappropriate measures distorting 

the link to economic performance (Armstrong & Fildes, 1995). Despite the continuing interest in the 

topic, the choice of the most suitable measure still remains controversial. Due to their statistical 

properties, popular measures do not always ensure easily interpretable results when applied in practice 

(Hyndman & Koehler, 2006). Surveys show that the proportion of firms tracking the aggregated 

accuracy is surprisingly small (55% as reported by McCarthy et al., 2006). One apparent reason for this 

is the inability to agree on appropriate accuracy metrics (Hoover, 2006). 

We look at the behaviours of commonly used measures when measuring accuracy across many series 

(e.g., when dealing with SKU-level data). After identifying most desirable properties of an error 

measure (including robustness and ease of interpretation), we illustrate that traditional measures are 

prone to obtaining confusing and even misleading results. Some measures (such as MAPE) are 

extremely vulnerable to outliers. Limitations of popular error measures have been widely discussed 

(e.g., see Hyndman & Koehler, 2006). Here we systemize well-known problems and identify a number 

of additional important limitations of existing measures that have not yet been given enough attention. 

To overcome the shortcomings of percentage errors, Hyndman & Koehler (2006) suggest scaling 

forecasting errors by MAE (mean absolute error) from naïve forecast. This measure is known as MASE 

(mean absolute scaled error). We show that MASE (i) introduces a bias towards overrating the 

performance of the benchmark as a result of arithmetic averaging and (ii) is vulnerable to outliers as a 

result of dividing by small benchmark MAEs. 

We propose an enhanced measure that shows an average relative improvement under linear loss. In 

contrast to MASE, our measure averages relative MAEs using the weighted geometric mean. 

Our empirical analysis uses SKU-level data containing statistical forecasts and corresponding 

judgmental adjustments. We look at the task of measuring the accuracy of such adjustments. Some 

studies of accuracy of judgmental adjustments have produced conflicting results (e.g., Fildes et al., 
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2009; Franses & Legertee, 2010). Different measures were applied to different data and arrived at 

different conclusions. Several studies reported an interesting picture where adjustments improved 

MdAPE, while harming MAPE (Fildes et al., 2009; Trapero et al., 2011). These confusing results require 

better understanding about what lies behind different error measures. We discuss the appropriateness 

of various measures used and demonstrate the use of the measure we recommend. 

Next section describes the data employed for empirical illustrations. Section 3 illustrates the limitations 

of well-known measures. Section 4 introduces the enhanced measure. Section 5 contains the results of 

applying different measures. The concluding section summarises our findings and offers 

recommendations as to which of the different measures can be employed safely. 

2. Data 

 

We employ data from a fast-moving consumer goods (FMCG) manufacturer. For each SKU and each 

month we have: 

(i)  one-step-ahead forecast computed automatically by a software system (system forecast); 

(ii) corresponding judgmentally adjusted forecast obtained from experts after their revision of the 

statistical forecast (Fildes et al., 2009) (final forecast); and 

(iii) actual sales (actuals). 

In total, our data contains 412 series and 6882 observations. The data is representative for companies 

dealing with many series of different lengths relating to different SKUs. The frequency of zero demand 

and zero error observations for our data was not high. However, our further discussion will also 

consider situations when small counts and zeroes occur frequently, as is common with intermittent 

demand. 

3. Critical Review of Existing Measures 

 

3.1. Desirable Properties 

What are the properties of an ideal error measure? There have been different attempts in literature to 

identify the most important properties by which an adequacy of an error measure should be judged. In 

particular, (Fildes, 1992) justifies the properties of interpretability and sensitivity to outliers 

(robustness). Some authors (e.g., Zellner, 1986) argue that the criterion by which we evaluate forecasts 

should correspond to the criterion by which we optimise forecasts. In other words, if we optimise 
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estimates using some given loss function, we must use the same loss function for empirical evaluation 

in order to find out which model is better.  

Fitting a statistical model usually delivers forecasts optimal under quadratic loss. This, e.g., happens 

when we fit a linear regression. If our density forecast from statistical modelling is symmetric, then 

forecasts optimal under quadratic loss are also optimal under linear loss. But, if we stabilise the 

variance by log-transformations and then transform back forecasts by exponentiation, we get forecasts 

optimal only under linear loss. If we use another loss, we must first obtain the density forecast using a 

statistical model, and then adjust our estimate given our specific loss function (see examples of doing 

this in Goodwin, 2000). 

Let’s assume we want to empirically compare two methods and find out which method is better in 

terms of a symmetric linear loss (since this type of loss is commonly used in modelling). If we have only 

one time series, it seems natural to use a mean absolute error (MAE). Also, MAE is attractive as it is 

simple to understand and calculate (Hyndman, 2006). Potentially, MAE has the following limitation: 

absolute errors follow a highly skewed distribution with a heavy right tail, which means that MAE is not 

robust (in other words, it is a highly inefficient estimate). But there is a more important problem: when 

comparing accuracy across series, MAE becomes unsuitable as it is not scale-independent. 

In this paper we address the question of how to adequately represent forecasting performance under 

symmetric linear loss when measuring accuracy across series. We aim for the following properties: i) 

interpretability, ii) robustness, iii) applicability in a wide range of settings (e.g. allows zero errors or 

forecasts/actuals, etc.), iv) informativeness, v) the use of the same loss function that was used for 

optimisation, and vi) scale-independence. 

 

3.2. Percentage Errors 

Although MAPE is very popular, it has many problems. 

Problem 1: zero and negative actuals cannot be used. MAPE is therefore unsuitable for intermittent 

demand data. 

Problem 2: extreme percentages. The sample mean of APEs due to the skewed and diffuse distribution 

gives a highly inefficient estimate and is severely affected by extreme cases. The distribution of APEs for 

our data is illustrated by Figure 1. APEs are often larger than 100%. Such extremes do not allow for a 

meaningful interpretation since corresponding forecasting errors are not necessarily very harmful or 

damaging. Large percentages often arise merely due to the relatively low actual values. Due to the large 

influence of outliers the sample mean in a highly skewed distribution becomes inefficient. In other 

words, for highly skewed distributions it can take a very big sample size before the most likely value of 

the sample mean approaches the true population mean (Fleming, 2008). 
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Figure 1. Box-plot for APEs (log scale) 

Problem 3: non-symmetric loss. Percentage errors put a heavier penalty on positive errors than on 

negative errors when the forecast is taken as fixed. This leads to a serious bias when trying to average 

APEs using the arithmetic mean. Kolassa and Schutz (2007) provide the following example. Assume that 

we have a series containing values distributed uniformly between 10 and 50. If we are using a 

symmetrical loss, the best forecast would be 30. However, a forecast of 22 produces better MAPE. 

Thus, MAPE is not indicative of accuracy in terms of a symmetric loss even for a single series. 

Problem 4: misleading when errors correlate with actuals. The comparison of forecasting performance 

based on percentage errors can give misleading results when the improvement in accuracy correlates 

with actual value on the original scale (Davydenko and Fildes, 2013). 

 

Various improvements have been proposed in literature, but none of them solves the problems: 

Trimmed/Winsorized 
MAPE 

This approach aims to improve robustness, but introduces another 
problem. Since the distribution of APEs is non-symmetric, the use of 
trimmed or Winsorized means makes the resulting estimates biased. 
Moreover, this does not solve problems 1, 3, and 4. 

Symmetric MAPE, 
SMAPE 

As shown in literature, SMAPE does not solve problem 2 at all (Goodwin 
& Lawton, 1999). In fact, this approach does not solve any of the above 
problems whatsoever.  
The only correct approach to average ratios is through the use of 
logarithms (Fleming & Wallace, 1986), but see the next comments. 

Geometric mean 
APE, GMAPE 
 

This is equivalent to the mean of log-transformed APEs as suggested by 
(Swanson et al., 2000). This solves problems 2 and 3, but does not solve 
problems 1 and 4. Also, zero errors are not allowed. 

MdAPE MdAPE is not easily interpretable and is not sufficiently indicative of 
changes in accuracy when forecasting methods have different shapes of 
error distributions. The sample median of APEs is resistant to the 
influence of extreme cases, but at the same time it is insensitive to large 
errors even if they are not outliers or extreme percentages. Also, difficult 
to assess statistical significance of difference in accuracy. 
Problem 4 still persists. 
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3.3. Relative Errors (REs) 

Well-known RE-measures include Mean Relative Absolute Error (MRAE), Median Relative Absolute 

Error (MdRAE), and Geometric Mean Relative Absolute Error (GMRAE). 

When averaging benchmark ratios the geometric mean has the advantage over the arithmetic mean 

(Fleming & Wallace, 1986). The geometric mean produces rankings that are invariant to the choice of 

the benchmark. Suppose method A is compared with method B. Let method A is used as the 

benchmark and the arithmetic mean of absolute REs indicates that method B is superior. Then, if 

method B is used as a benchmark instead of method A, the arithmetic mean can indicate that now 

method A is superior. Such results are ambiguous and can lead to confusion in their interpretation. Of 

the measures based on REs, GMRAE is the only measure that has the property of not changing the 

ranking depending on what method is used as the benchmark. But GMRAE has its limitations. 

Problem 1. Zero errors are not allowed. When using intermittent demand data, the use of relative 

errors becomes impossible due to the frequent occurrences of zero errors (Hyndman, 2006). 

Problem 2. GMRAE generally does not reflect changes in accuracy under linear or quadratic loss. For 

instance, for a particular time series GMAE can compare methods in favour of a method producing 

errors with a heavier tailed-distribution, while for the same series MAE or MSE can suggest the 

opposite ranking. 

Consider the following example. Suppose that for a particular time series, method A produces errors 𝑒𝑡
A 

that are independent and identically distributed variables following a heavy-tailed distribution. More 

specifically, let 𝑒𝑡
A follow the t-distribution with 𝜈 = 3 degrees of freedom: 𝑒𝑡

A ~ 𝑡𝜈. Also, let method B 

produce independent errors that follow the normal distribution: 𝑒𝑡
B ~ 𝑁(0, 3). Let method B be the 

benchmark method. It can be shown analytically that the variances for 𝑒𝑡
A and 𝑒𝑡

B are equal (methods 

have the same performance under quadratic loss): Var(𝑒𝑡
A) = Var(𝑒𝑡

B) = 3. However, GMRAE shows 

method A being better than method B: GMRAE ≈ 0.69. 

Thus, even for a single series, a statistically significant improvement of GMRAE is not equivalent to a 

statistically significant improvement under quadratic or linear loss. 

 

3.4 Percent Better 

A simple approach to compare forecasting accuracy of methods A and B is to calculate the percentage 

of cases when method A was closer to actual than method B. This measure, known as ‘Percent Better’ 

(PB), was recommended by some authors as a fairly good indicator (e.g., Chatfield, 2001). It has the 

advantage of being immune to outliers and scale-independent. Although PB seems to be easy to 

interpret, the following important limitations should be taken into account.  
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(1) 

Problem 1: PB does not show the magnitude of changes in accuracy (Hyndman & Koehler, 2006). Thus, 

it becomes hard to assess the consequences of using one method instead of another. 

Problem 2: PB does not reflect changes under linear loss. As was the case for the GMRAE, we can 

show that if shapes of error distributions are different for different methods, PB becomes non-

indicative of changes under linear loss even for a single series. 

Problem 3: many equal forecasts lead to confusing results. When methods A and B frequently produce 

equal forecasts (this often happens with intermittent demand data), obtaining PB<50% is not 

necessarily a bad result. But, without additional information, we cannot draw any conclusions about 

the changes in accuracy. 

 

3.5. Scaled Errors 

When forecasts are produced from varying origins but with a constant horizon, the MASE is calculated 

as 

𝑞𝑖,𝑡 =
𝑒𝑖,𝑡

MAE𝑖
b

, MASE = mean(|𝑞𝑖,𝑡|), 

where 𝑒𝑖,𝑡 is forecasting error for period 𝑡 for time series 𝑖, 𝑞𝑖,𝑡 is the scaled error, and MAE𝑖
b is the in-

sample MAE of naïve forecast for series 𝑖. 

It is possible to show that, in this scenario, MASE is equivalent to the weighted arithmetic mean of 

relative MAEs where the number of available values of 𝑒𝑖,𝑡 is used as the weight: 

MASE =
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑛𝑖

𝑚

𝑖=1
𝑟𝑖,    𝑟𝑖 =

MAE𝑖

MAE𝑖
b

, 

where 𝑚 is the total number of series, 𝑛𝑖 is the number of available values of 𝑒𝑖,𝑡 for series 𝑖, MAE𝑖
b is 

the MAE of the benchmark forecast for series 𝑖, and MAE𝑖 is the MAE of the forecast being evaluated 

against the benchmark. 

Problem 1: Bias towards overrating the benchmark. 

As noted previously, the arithmetic mean is not appropriate for averaging observations representing 

relative quantities. In such situations the geometric mean should be used instead. As a result of using 

the arithmetic mean of 𝑟𝑖, equation (1) introduces a bias towards overrating the accuracy of a 

benchmark forecasting method. In other words, the penalty for bad forecasting becomes larger than 

the reward for good forecasting. 
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For example, suppose that the performance of some forecasting method is compared with the 

performance of the naïve method across two series (𝑚 = 2) which contain equal numbers of forecasts 

and observations. For the first series, the MAE ratio is 𝑟1 = 1/2, and for the second series, the MAE 

ratio is the opposite: 𝑟2 = 2/1. The improvement in accuracy for the first series obtained using the 

forecasting method is the same as the reduction for the second series. However, averaging the ratios 

gives MASE = ½ (𝑟1 + 𝑟2) = 1.25, which indicates that the benchmark method is better. While this is a 

well-known point, its implications for error measures, with the potential for misleading conclusions, are 

widely ignored. 

Problem 2: Skewed, heavy-tailed, left-bounded distribution. 

In addition to the above effect, the use of MASE (like MAPE) may result in unstable estimates, as the 

arithmetic mean is severely influenced by extreme cases arising from dividing by relatively small values 

(see Figure 2). In case of MASE outliers occur when dividing by relatively small benchmark MAEs. Such 

MAEs are likely to appear in short series. At the same time, attempts to trim or Winsorize MASE lead to 

biased results. 

 

Figure 2. Box-plot for absolute scaled errors (log scale) 

Thus, while the use of the standard MAPE has long been known to be flawed, the newly proposed 

MASE also suffers from some of the same limitations, and may also lead to an unreliable interpretation 

of the empirical results. 

 

3.6. MAD/MEAN Ratio 

In contrast to the MASE, the MAD/MEAN ratio assumes that the forecasting errors are scaled by the 

mean of series actuals instead of by the in-sample MAE of naïve forecast. This reduces the risk of 

dividing by a small denominator (see Kolassa & Schutz, 2007), however: 

Problem 1: MAD/MEAN assumes stable mean. Hyndman (2006) notes that the MAD/MEAN ratio 

assumes the series mean is stable over time, which may make it unreliable when the data exhibit trends 

or seasonal patterns. 

Problem 2: Outliers. Figure 3 shows that the MAD/MEAN scheme is prone to outliers for the dataset 

we consider in this paper. Again, attempts to trim/Winsorize lead to biases. Generally, MAD/MEAN 
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ratio introduces the risk of producing unreliable estimates that are based on highly skewed left-

bounded distributions. 

 

Figure 3. Box-plot for absolute scaled errors found by the MAD/MEAN scheme (log scale) 

 

4. Recommended scheme for measuring the accuracy of point forecasts across 

many series 

 

To ensure a reliable evaluation of forecasting accuracy under symmetric linear loss, we recommend 

using the following scheme. Suppose we want to measure the accuracy of ℎ-step-ahead forecasts 

produced with some forecasting method A across 𝑚 time series. Firstly, we need to select a benchmark 

method. This, in particular, can be the naïve method. Let 𝑛𝑖 denote the number of periods for which 

both the ℎ-step-ahead forecasts and actual observations are available for series 𝑖. Then the accuracy 

measurement procedure is as follows: 

1. For each time series 𝑖 in 1 … 𝑚 

a. Calculate the relative MAE as 𝑟𝑖 =
MAE𝑖

A

MAE𝑖
B,  

where MAE𝑖
A and MAE𝑖

B denote out-of-sample h-step-ahead MAEs for method A and for the 

benchmark, respectively. 

 

b. Calculate the weighted log relative MAE as 𝑙𝑖 = 𝑛𝑖 ln 𝑟𝑖. 

 

2. Calculate Average Relative MAE:  

 

AvgRelMAE = exp (
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑙𝑖

𝑚

𝑖=1
). 
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If there is evidence for a non-normal distribution of 𝑙𝑖, use the following procedure to ensure more 

efficient estimates: 

 

a. Find the indices of 𝑙𝑖 that correspond to the 5% of largest and 5% of lowest values. Let 𝑅 be 

a set that contains the remaining indices. 

b. Calculate trimmed AvgRelMAE: 

AvgRelMAEtrimmed = exp (
1

∑ 𝑛𝑖𝑖∈𝑅

∑ 𝑙𝑖
𝑖∈𝑅

). 

3. Assess the statistical significance of changes by testing the mean of 𝑙𝑖 against zero. For this purpose, 

the Wilcoxon’s one-sample signed rank test can be used (assuming that the distribution of 𝑙𝑖 is 

symmetric, but not necessarily normal). If the distribution of 𝑙𝑖 is non-symmetric, the binomial test 

can be used to test the median of 𝑙𝑖 against zero. If the distribution has a negative skew then it is 

likely that the negative median will indicate negative mean as well. 

Notes:  (a) In theory, the following effect may complicate the interpretation of AvgRelMAE. Since 𝑟𝑖 

is a ratio estimator, if the distributions of errors from method A, and the benchmark, 𝑒𝑖,𝑡
A  

and 𝑒𝑖,𝑡
B , within series 𝑖 have different levels of kurtosis, then ln 𝑟𝑖 is a biased estimate of  

ln(𝐸|𝑒𝑖,𝑡
A |/𝐸|𝑒𝑖,𝑡

B |). In fact, if 𝑛𝑖 = 1 for each 𝑖, then the AvgRelMAE becomes equivalent to 

the GMRAE, which has the limitations described in Section 3.3. However, in practice this 

effect is usually negligible when 𝑛𝑖 > 5. But, if necessary, standard correction methods for 

ratio estimators can be used. 

(b) If distribution of absolute errors is heavily skewed, MAE becomes a very inefficient 

estimate of the expected value of absolute error. One simple method to improve the 

efficiency of the estimates while not introducing substantial bias is to use asymmetric 

trimming algorithms, such as those described by (Alkhazeleh and Razali, 2010). However, 

further discussions on this topic are outside the scope of our paper. 

(c) In step 2, the optimal trim level depends on the shape of the distribution of 𝑙𝑖. Our 

experiments suggest that, for the distributions that are likely to be obtained, the efficiency 

of the trimmed mean is not highly sensitive to the choice of the trim level. Any trim 

between 2% and 10% gives reasonably good results. Generally, when the underlying 

distribution is symmetrical and heavy-tailed relative to Gaussian, the variance of the 

trimmed mean is quite a lot smaller than the variance of the sample mean. Therefore, it is 

highly recommended to use trimmed means for symmetrical distributions. 
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5. Results of Empirical Evaluation 

 

The results of applying the measures described above are shown in Table 1. When calculating the 

AvgRelMAE we used statistical forecast as the benchmark. 

For the empirical dataset, the analysis has shown that adjustments improved accuracy in terms of the 

AvgRelMAE, but for the same dataset, a range of well-known error measures, including MAPE, MdAPE, 

GMRAE, MASE, and the MAD/MEAN ratio, indicated conflicting results. The analysis using MAPE, MASE, 

and the MAD/MEAN was affected by the highly skewed underlying distribution. 

 

Table 1: Accuracy of adjustments according to different error measures 

Error measure 
Positive adjustments 

Negative 
adjustments 

All nonzero 
adjustments 

Statistical 
forecast 

Adjusted 
forecast 

Statistical 
forecast 

Adjusted 
forecast 

Statistica
l forecast 

Adjusted 
forecast 

MAPE, % 
(untrimmed) 

38.85 61.54 70.45 45.13 47.88 56.85 

MAPE, % 
(2 % trimmed) 

30.98 40.56 48.71 30.12 34.51 37.22 

MdAPE, % 25.48 20.65 23.90 17.27 24.98 19.98 

GMRAE 1.00 0.93 1.00 0.70 1.00 0.86 

GMRAE 
(5 % trimmed) 

1.00 0.94 1.00 0.71 1.00 0.87 

MASE 0.97 0.97 0.95 0.70 0.96 0.90 

Mean (MAD/Mean) 0.37 0.42 0.33 0.24 0.36 0.37 

Mean (MAD/Mean) 
(5 % trimmed) 

0.34 0.35 0.29 0.21 0.33 0.31 

AvgRelMAE 1.00 0.96 1.00 0.71 1.00 0.90 

AvgRelMAE 
(5 % trimmed) 

1.00 0.96 1.00 0.73 1.00 0.89 

Avg. improvement 
based on 

AvgRelMAE 
0.00 0.04 0.00 0.29 0.00 0.10 

 

The AvgRelMAE result shows improvements from both positive and negative adjustments, whereas, 

according to MAPE and MASE, only negative adjustments improve the accuracy. For the whole sample, 

adjustments improve the MAE of statistical forecast by 10%, on average. Positive adjustments are less 

accurate than negative adjustments and provide only minor improvements. To assess the significance 
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of changes in accuracy in terms of MAE, we applied the two-sided Wilcoxon test to test the mean of the 

weighted relative log-transformed MAEs against zero. The p-value was <0.01 for the set containing the 

adjustments of both signs, <0.05 for only positive adjustments, and <2.2 ∙ 10−16 for only negative 

adjustments. 

6. Conclusions 

 

Since analyses based on different measures can lead to different conclusions, it is important to have a 

clear understanding of the statistical properties of any error measure used. We showed that in practice 

many well-known error measures become inappropriate. 

In order to overcome the disadvantages of existing measures, we recommend the use of the average 

relative MAE (AvgRelMAE) measure which is calculated as the geometric mean of relative MAE values. 

In practice, the adoption of a new error measure may present difficulties due to organisational factors. 

If organisation insists on using percentages, we recommend using geometric mean APE instead of 

MAPE because it helps overcome some problems, as described in Section 3.2. 
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