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Measuring Forecasting Accuracy: Problems and Recommendations 

(by the example of SKU-level judgmental adjustments)1 

Andrey Davydenko2, Robert Fildes 

Department of Management Science, Lancaster University, Lancaster, LA1 4YX, UK 

Abstract   Forecast adjustment commonly occurs when organizational forecasters 

adjust a statistical forecast of demand to take into account factors which are ex-

cluded from the statistical calculation. This paper addresses the question of how to 

measure the accuracy of such adjustments. We show that many existing error 

measures are generally not suited to the task, due to specific features of the de-

mand data. Alongside the well-known weaknesses of existing measures, a number 

of additional effects are demonstrated that complicate the interpretation of meas-

urement results and can even lead to false conclusions being drawn. In order to 

ensure an interpretable and unambiguous evaluation, we recommend the use of a 

metric based on aggregating performance ratios across time series using the 

weighted geometric mean. We illustrate that this measure has the advantage of 

treating over- and under-forecasting even-handedly, has a more symmetric distri-

bution, and is robust. 

Empirical analysis using the recommended metric showed that, on av-

erage, adjustments yielded improvements under symmetric linear loss, while 

harming accuracy in terms of some traditional measures. This provides further 

support to the critical importance of selecting appropriate error measures when 

evaluating the forecasting accuracy. The general accuracy evaluation scheme rec-

ommended in the paper is applicable in a wide range of settings including fore-

casting for fashion industry. 

 

Keywords: judgmental adjustments, forecasting support systems, forecast accu-

racy, forecast evaluation, forecast error measures. 

                                                           
1 This paper is an extended version of Davydenko and Fildes (2013) which appeared in 

the International Journal of Forecasting. 
2 Corresponding author. E-mail: davydenkoa@yandex.ru. 
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1. Introduction 

The most well-established approach to forecasting within supply chain compa-

nies starts with a statistical time series forecast, which is then adjusted by manag-

ers in the company based on their expert knowledge. This process is usually car-

ried out at a highly disaggregated level of SKUs (stock-keeping units), where 

there are often hundreds if not thousands of series to consider (Sanders & Ritz-

man, 2004; Fildes & Goodwin, 2007). At the same time, the empirical evidence 

suggests that judgments under uncertainty are affected by various types of cogni-

tive biases and are inherently non-optimal (Tversky & Kahneman, 1974). Such bi-

ases and inefficiencies have been shown to apply specifically to judgmental ad-

justments (Fildes, Goodwin, Lawrence, & Nikolopoulos, 2009). Therefore, it is 

important to monitor the accuracy of judgmental adjustments in order to ensure 

the rational use of the organisation’s resources which are invested in the forecast-

ing process. 

The task of measuring the accuracy of judgmental adjustments is inseparably 

linked with the need to choose an appropriate error measure. In fact, the choice of 

an error measure for assessing the accuracy of forecasts across time series is itself 

an important topic for forecasting research. It has theoretical implications for the 

comparison of forecasting methods and is of wide practical importance, since the 

forecasting function is often evaluated using inappropriate measures (see, for ex-

ample, Armstrong & Collopy, 1992; Armstrong & Fildes, 1995), and therefore the 

link to economic performance may well be distorted. Despite the continuing inter-

est in the topic, the choice of the most suitable error measure for evaluating com-

panies’ forecasts still remains controversial. Due to their statistical properties, 

popular error measures do not always ensure easily interpretable results when ap-

plied to real-world data (Hyndman & Koehler, 2006; Kolassa & Schutz, 2007). In 

practice, the proportion of firms which track the aggregated accuracy is surprising-

ly small, and one apparent reason for this is the inability to agree on appropriate 

accuracy metrics (Hoover, 2006). As McCarthy, Davis, Golicic, and Mentzer 

(2006) reported, only 55% of the companies surveyed believed that their forecast-

ing performance was being formally evaluated. 

The key issue when evaluating a forecasting process is the improvements 

achieved in supply chain performance. While this has only an indirect link to the 

forecasting accuracy, organisations rely on accuracy improvements as a suitable 

proxy measure, not least because of their ease of calculation. This paper examines 

the behaviours of various well-known error measures in the particular context of 

demand forecasting in the supply chain. We show that, due to the features of SKU 

demand data, well-known error measures are generally not advisable for the eval-

uation of judgmental adjustments, and can even give misleading results. To be 
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useful in supply chain applications, an error measure usually needs to have the fol-

lowing properties: (i) scale independence – though it is sometimes desirable to 

weight measures according some characteristic such as their profitability; (ii) ro-

bustness to outliers; and (iii) interpretability (though the focus might occasionally 

shift to extremes, e.g., where ensuring a minimum level of supply is important). 

The most popular measure used in practice is the mean absolute percentage er-

ror, MAPE (Fildes & Goodwin, 2007), which has long been being criticised (see, 

for example, Fildes, 1992; Hyndman & Koehler, 2006; Kolassa & Schutz, 2007). 

In particular, the use of percentage errors is often inadvisable, due to the large 

number of extremely high percentages which arise from relatively low actual de-

mand values. 

To overcome the disadvantages of percentage measures, the MASE (mean ab-

solute scaled error) measure was proposed by Hyndman and Koehler (2006). The 

MASE is a relative error measure which uses the MAE (mean absolute error) of a 

benchmark forecast (specifically, of the random walk) as its denominator. In this 

paper we analyse the MASE and show that, like the MAPE, it also has a number 

of disadvantages. Most importantly: (i) it introduces a bias towards overrating the 

performance of a benchmark forecast as a result of arithmetic averaging; and (ii) it 

is vulnerable to outliers, as a result of dividing by small benchmark MAE values. 

To ensure a more reliable evaluation of the effectiveness of adjustments, this 

paper proposes the use of an enhanced measure that shows the average relative 

improvement in MAE. In contrast to MASE, it is proposed that the weighted geo-

metric average be used to find the average relative MAE. By taking the statistical 

forecast as a benchmark, it becomes possible to evaluate the relative change in 

forecasting accuracy yielded by the use of judgmental adjustments, without expe-

riencing the limitations of other standard measures. Therefore, the proposed statis-

tic can be used to provide a more robust and easily interpretable indicator of 

changes in accuracy, meeting the criteria laid down earlier. 

The importance of the choice of an appropriate error measure is justified by the 

fact that previous studies of the gains in accuracy from the judgmental adjustment 

process have produced conflicting results (e.g., Fildes et al., 2009; Franses & Leg-

erstee, 2010). In these studies, different measures were applied to different da-

tasets and arrived at different conclusions. Some studies where a set of measures 

was employed reported an interesting picture, where adjustments improved the ac-

curacy in certain settings according to MdAPE (median absolute percentage er-

ror), while harming the accuracy in the same settings according to MAPE (Fildes 

et al., 2009; Trapero, Pedregal, Fildes, & Weller, 2011). In practice, such results 

may be damaging for forecasters and forecast users, since they do not give a clear 

indication of the changes in accuracy that correspond to some well-known loss 

function. Using real-world data, this paper considers the appropriateness of vari-
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ous previously used measures, and demonstrates the use of the proposed enhanced 

accuracy measurement scheme. 

The next section describes the data employed for the analysis in this paper. 

Section 3 illustrates the disadvantages and limitations of various well-known error 

measures when they are applied to SKU-level data. In the fourth section, the pro-

posed accuracy measure is introduced. The fifth section contains the results from 

measuring the accuracy of judgmental adjustments with real-world data using the 

alternative measures and explains the differences in the results, demonstrating the 

benefits of the proposed enhanced accuracy measure. The concluding section 

summarises the results of the empirical evaluation and offers practical recommen-

dations as to which of the different error measures can be employed safely. 

2. Descriptive analysis of the source data 

The current research employed data collected from a company specialising in 

the manufacture of fast-moving consumer goods (FMCG) which are fashionable 

in nature. This is an extended data set from one of the companies considered by 

Fildes et al. (2009). The company concerned is a leading European provider of 

household and personal care products to a wide range of major retailers. Table 1 

summarises the data set and contains the number of cases used for the analysis. 

Each case includes (i) the one-step-ahead monthly forecast prepared using some 

statistical method (this will be called the system forecast); (ii) the corresponding 

judgmentally adjusted forecast (this will be called the final forecast); and (iii) the 

corresponding actual demand value. The system forecast was obtained using an 

enterprise software package, and the final forecast was obtained as a result of a re-

vision of the statistical forecast by experts (Fildes et al., 2009). The two forecasts 

coincide when the experts had no extra information to add. The data set is repre-

sentative of most FMCG manufacturing or distribution companies which deal with 

large numbers of time series of different lengths relating to different products, and 

is similar to the other manufacturing data sets considered by Fildes et al. (2009), in 

terms of the total number of time series, the proportion of judgmentally adjusted 

forecasts and the frequencies of occurrence of zero errors and zero actuals. 

 

Table 1: Source data summary. 

 

Total number of cases 6882 

Total number of time series (SKUs) 412 

Period of observations Mar 2004 to Jul 2007 

Total number of adjusted statistical forecasts 4779 (69%) 
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(% of total number of cases) 

Number of zero actual demand periods 

(% of total number of cases) 

271 (4%) 

Number of zero-error statistical forecasts 

(% of total number of cases) 

47  (<1%) 

Number of zero-error judgmentally adjusted forecasts 

(% of total number of adjusted forecasts) 

61 (1%)  

Number of positive adjustments 

(% of total number of adjusted forecasts) 

3394 (71%)  

Number of negative adjustments 

(% of total number of adjusted forecasts) 

1385 (29 %) 

 

Since the data relate to FMCG, the numbers of cases of zero demand periods 

and zero errors are not large (see Table 1). However, the further investigation of 

the properties of error measures presented in Section 3 will also consider possible 

situations when the data involve small counts, and zero observations occur more 

frequently (as is common with intermittent demand data). 

As Table 1 shows, for this particular data set, adjustments of positive sign oc-

cur more frequently than adjustments of negative sign. However, in order to char-

acterise the average magnitude of the adjustments, an additional analysis is re-

quired. In their study of judgmental adjustments, Fildes et al. (2009) analysed the 

size of judgmental adjustments using the measure of relative adjustments that is 

defined as 100 × (Final forecast − System forecast)/System forecast. 
As the values of the relative adjustments are scale-independent, they can be 

compared across time series. However, the above measure is asymmetrical. For 

example, if an expert doubles a statistical forecast (say from 10 units to 20 units), 

he/she increases it by 100%, but if he/she halves a statistical forecast (say from 20 

units to 10 units), he/she decreases it by 50% (not 100%). The sampling distribu-

tion of the relative adjustment is bounded by –100% on the left side and unbound-

ed on the right side (see Fig. 1). Generally, these effects mean that the distribution 

of the relative adjustment may become non-informative about the size of the ad-

justment as measured on the original scale. When defining a ‘symmetric measure’, 

Mathews and Diamantopoulos (1987) argued for a measure where the adjustment 

size is measured relative to an average of the system and final forecasts. The same 

principle is used in the symmetric MAPE (sMAPE) measure proposed by Ma-

kridakis (1993). However, Goodwin and Lawton (1999) later showed that such 

approaches still do not lead to the desirable property of symmetry. 
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Fig. 1. Histogram of the relative adjustment, measured in percentages. 

 

In this paper, in order to avoid the problem of the non-symmetrical scale of the 

relative adjustment, we carry out the analysis of the magnitude of adjustments us-

ing the natural logarithm of the (Final forecast/System forecast) ratio. Log-

transformation is a common approach to restore symmetry with ratio data since 

ln (𝐴/𝐵) = −ln (𝐵/𝐴) for any positive numbers 𝐴 and 𝐵. 

From Fig. 2, it can be seen that the log-transformed relative adjustment follows 

a leptokurtic distribution and this distribution is still non-symmetrical (although 

not as severely as for the original data shown on Fig. 1). As is well known, the 

sample mean is not an efficient measure of location under departures from normal-

ity (Wilcox, 2005). We therefore used the trimmed mean as a more robust sum-

mary measure of location. The optimal trim level that corresponds to the lowest 

variance of the trimmed mean depends on the distribution, which is unknown in 

the current case. Some studies have shown that, for symmetrical distributions, a 

5% trim generally ensures a high efficiency with a useful degree of robustness 

(e.g., Hill & Dixon, 1982). However, it is also known that the trimmed mean gives 

a biased estimate if the distribution is skewed (Marques, Neves, & Sarmento, 

2000). We used a 2% trim in order to eliminate the influence of outliers while at 

the same time avoiding introducing a substantial bias. 

The results presented in Table 2 suggest that, on average, for the dataset under 

consideration, the magnitude of positive adjustments is higher than the magnitude 

of negative adjustments, measured relative to the system forecast. Even after using 

a log scale to treat percentages to baseline symmetrically, the magnitude of posi-

tive adjustments is pronouncedly higher than the magnitude of negative ones. The 

average magnitude of a positive relative adjustment is about twice as large as the 
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average magnitude of a negative adjustment. Also, adjustments with positive signs 

have much higher ranges than negative ones. 

 

 

 

 
 

Fig. 2. Histogram of  ln(Final forecast/System forecast). 

 

 

 

 

Table 2: Summary statistics for the magnitude of adjustment. 

 

Sign of 

adjust-

ment 

ln(Final forecast/System forecast) 

1st quartile Median 3rd quar-

tile 

Mean(2% trim) exp[Mean(2% trim)] 

Positive 0.123 0.273 0.592 0.412 1.510 

Negative –0.339 –0.153 –0.071 –0.290 0.749 

Both –0.043 0.144 0.425 0.218 1.243 
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3. Appropriateness of existing measures for SKU-level demand 

data 

3.1. Percentage errors 

Let the forecasting error for a given time period 𝑡 and SKU 𝑖 be 

 

𝑒𝑖,𝑡 = 𝑌𝑖,𝑡 − 𝐹𝑖,𝑡, 

 

where 𝑌𝑖,𝑡 is a demand value for SKU 𝑖 observed at time 𝑡, and 𝐹𝑖,𝑡 is the forecast 

of 𝑌𝑖,𝑡. 

A traditional way to compare the accuracy of forecasts across multiple time se-

ries is based on using absolute percentage errors (Hyndman & Koehler, 2006). Let 

us define the percentage error (PE) as 𝑝𝑖,𝑡 = 100 × 𝑒𝑖,𝑡/𝑌𝑖,𝑡. Hence, the absolute 

percentage error (APE) is |𝑝𝑖,𝑡|. The most popular PE-based measures are MAPE 

and MdAPE, which are defined as follows: 

 

MAPE = mean(|𝑝𝑖,𝑡|), 

 MdAPE = median(|𝑝𝑖,𝑡|), 

 

where mean(|𝑝𝑖,𝑡|) denotes the sample mean of |𝑝𝑖,𝑡| over all available values of i 

and t, and median(|𝑝𝑖,𝑡|) is the sample median. 

In the study by Fildes et al. (2009), these measures served as the main tool for 

the analysis of the accuracy of judgmental adjustments. In order to determine the 

change in forecasting accuracy, MAPE and MdAPE values of the statistical base-

line forecasts and final judgmentally adjusted forecasts were calculated and com-

pared. The significance of the change in accuracy was assessed based on the dis-

tribution of the differences between the absolute percentage errors (APEs) of 

forecasts. The difference between APEs is defined as 

 

𝑑𝑖,𝑡
APE = |𝑝𝑖,𝑡

f | − |𝑝𝑖,𝑡
s |, 

 

where |𝑝𝑖,𝑡
f | and |𝑝𝑖,𝑡

s | denote APEs for the final and system forecasts, respectively, 

for a given SKU 𝑖 and period 𝑡. Fildes et al. (2009) used the Wilcoxon’s two-

sample paired signed rank test to compare the APEs of the final and system fore-

casts. This is equivalent to performing a one-sample signed rank test to test the 

median of 𝑑𝑖,𝑡
APE against zero. 
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The sample mean of 𝑑𝑖,𝑡
APE is the difference between the MAPE values corre-

sponding to the final and system forecasts: 

 

       mean(𝑑𝑖,𝑡
APE) = mean(|𝑝𝑖,𝑡

f |) − mean(|𝑝𝑖,𝑡
s |) = MAPEf − MAPEs.     (1) 

 

Therefore, testing the median of 𝑑𝑖,𝑡
APE against zero using the above tests leads 

to establishing whether MAPEf differs significantly from MAPEs (in case if the 

distribution of 𝑑𝑖,𝑡
APE is symmetric, which is one of the assumptions of the above 

tests). In fact, the distribution of 𝑑𝑖,𝑡
APE is inherently skewed, which complicates 

matters and may result in drawing erroneous conclusions, but we will now not fo-

cus on this particular problem. 

The results reported suggest that, overall, the value of MAPE was improved by 

the use of adjustments, but the accuracy of positive and negative adjustments dif-

fered substantially. Based on the MAPE measure, it was found that positive ad-

justments did not change the forecasting accuracy significantly, while negative ad-

justments led to significant improvements. However, percentage error measures 

have a number of disadvantages when applied to the adjustments data, as we ex-

plain below. 

One well-known disadvantage of percentage errors is that when the actual val-

ue 𝑌𝑖,𝑡 in the denominator is relatively small compared to the forecast error 𝑒𝑖,𝑡, the 

resulting percentage error 𝑝𝑖,𝑡 becomes extremely large, which distorts the results 

of further analyses (Hyndman & Koehler, 2006). Such high values can be treated 

as outliers, since they often do not allow for a meaningful interpretation (large 

percentage errors are not necessarily harmful or damaging, as they can arise mere-

ly from relatively low actual values). However, identifying outliers in a skewed 

distribution is a non-trivial problem, where it is necessary to determine an appro-

priate trimming level in order to find robust estimates, while at the same time 

avoiding losing too much information. Usually authors choose the trimming level 

for MAPE based on their experience after experimentation (for example, Fildes et 

al., 2009, used a 2% trim), but this decision still remains subjective. Moreover, the 

trimmed mean gives a biased estimate of location for highly skewed distributions 

(Marques et al., 2000), which complicates the interpretation of the trimmed 

MAPE. In particular, for a random variable that follows a highly skewed distribu-

tion, the expected value of the trimmed mean differs from the expected value of 

the random variable itself. This bias depends on both the trim level and the num-

ber of observations used to calculate the trimmed mean. Therefore, it is difficult to 

compare the measurement results based on the trimmed means for samples that 

contain different numbers of observations, even when the trim level remains the 

same. 
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SKU-level demand time series typically exhibit a high degree of variation in 

actual values, due to seasonal effects and the changing stages of a product’s life 

cycle. Therefore, data on adjustments can contain a high proportion of low de-

mand values, which makes PE-based measures particularly inadvisable in this 

context. Considering extremes, a common occurrence in the situation of intermit-

tent demand is for many observations (and forecasts) to be zero (see the discussion 

by Syntetos & Boylan, 2005). All cases with zero actual values must be excluded 

from the analysis, since the percentage error cannot be computed when 𝑌𝑖,𝑡 = 0, 

due to its definition. 

The extreme percentage errors that can be obtained can be shown using scaled 

values of errors and actual demand values (Fig. 3). The variables shown were 

scaled by the standard deviation of actual values in each series in order to elimi-

nate the differences between time series. It can be seen that the final forecast er-

rors have a skewed distribution and are correlated with both the actual values and 

the signs of adjustments; it is also clear that a substantial number of the errors are 

comparable to the actual demand values. Excluding observations with relatively 

low values on the original scale (here, all observations less than 10 were excluded 

from the analysis, as was done by Fildes et al., 2009) still cannot improve the 

properties of percentage errors sufficiently, since a large number of observations 

still remain in the area where the actual demand value is less than the absolute er-

ror. This results in extremely high APEs (>100%), which are all too easy to misin-

terpret (since very large APEs do not necessarily correspond to very damaging er-

rors, and arise primarily because of low actual demand values). In Fig. 3, the area 

below the dashed line shows cases in which the errors were higher than the actual 

demand values. These cases result in extreme percentage errors, as shown in Fig. 

4. Due to the presence of extreme percentages, the distribution of APEs becomes 

highly skewed and heavy-tailed, which makes MAPE-based estimates highly un-

stable. 

A widely used robust alternative to MAPE is MdAPE. However, MdAPE is 

neither easily interpretable nor sufficiently indicative of changes in accuracy when 

forecasting methods have different shaped error distributions. The sample median 

of the APEs is resistant to the influence of extreme cases, but is also insensitive to 

large errors, even if they are not outliers or extreme percentages. Comparing the 

accuracy using the MdAPE shows the changes in accuracy that relate to the lowest 

50% of APEs. However, MdAPE’s improvement can be accompanied by remain-

ing more damaging errors lying above the median if the shapes of the error distri-

butions differ. In Section 5, it will be shown that, while the MdAPE indicates that 

judgmental adjustments improve the accuracy for a given dataset, the trimmed 

MAPE suggests the opposite to be the case. Moreover, the task of assessing the 

statistical significance of changes for MdAPE can be problematic due to the non-

symmetric distributions of APEs. Therefore, additional indicators are required in 
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order to be able to draw better-substantiated conclusions with regard to the fore-

casting accuracy. 

 

0

5

10

15

-10 -5 0 5 10

0

5

10

15

-10 -5 0 5 10

scaled forecast error scaled forecast error

(a) Positive adjustments (b) Negative adjustments

s
c
a

le
d

 a
c
tu

a
l 
d

e
m

a
n

d
 v

a
lu

e

 
Fig. 3. Dependencies between forecast error, actual value, and the sign of adjustment 

(based on scaled data). 
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Fig. 4. Percentage errors, depending on the actual demand value and adjustment sign. 

 

Apart from the presence of extreme APEs, another problem with using PE-

based measures is that they can bias the comparison in favour of methods that is-

sue low forecasts (Armstrong, 1985; Armstrong & Collopy, 1992; Kolassa & 

Schutz, 2007). This happens because, under certain conditions, percentage errors 

put a heavier penalty on positive errors than on negative errors. In particular, we 

can observe it when the forecast is taken as fixed. To illustrate this phenomenon, 

Kolassa and Schutz (2007) provide the following example. Assume that we have a 

time series that contains values distributed uniformly between 10 and 50. If we are 
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using a symmetrical loss function, the best forecast for this time series would be 

30. However, a forecast of 22 produces a better accuracy in terms of MAPE. As a 

result, if the aim is to choose a method that is better in terms of a linear loss, then 

the values of PE-based measures can be misleading. The way in which the use of 

MAPE can bias the comparison of the performances of judgmental adjustments of 

different signs will be illustrated below. 

One important effect which arises from the presence of cognitive biases and the 

non-negative nature of demand values is the fact that the most damaging positive 

adjustments (producing the largest absolute errors) typically correspond to rela-

tively low actuals (left corner of Fig. 3(a)), while the worst negative adjustments 

(producing the largest absolute errors) correspond to higher actuals (centre sec-

tion, Fig. 3(b)). More specifically, the following general dependency can be found 

within most time series. The difference between the absolute final forecast error 

|𝑒𝑖,𝑡
f | and the absolute statistical forecast error |𝑒𝑖,𝑡

s | is positively correlated with 

the actual value 𝑌𝑖,𝑡 for positive adjustments, while there is a negative correlation 

for negative adjustments. To reveal this effect, distribution-free measures of the 

association between variables were used. For each SKU 𝑖, Spearman’s 𝜌 coeffi-

cients were calculated, representing the correlation between the improvement in 

terms of absolute errors (|𝑒𝑖,𝑡
f | − |𝑒𝑖,𝑡

s |) and the actual value 𝑌𝑖,𝑡. Fig. 5 shows the 

distributions of the coefficients 𝜌𝑖
+, calculated for positive adjustments, and 𝜌𝑖

−, 

corresponding to negative adjustments (the coefficients can take values 1 and –1 

when only a few observations are present in a series). For the given dataset, 

mean(𝜌𝑖
+) ≈ 0.47 and mean(𝜌𝑖

−) ≈ −0.44, indicating that the improvement in 

forecasting is markedly correlated with the actual demand values. This illustrates 

the fact that positive adjustments are most effective for larger values of demand, 

and least effective (or even damaging) for smaller values of demand. Actually, ef-

ficient averaging of correlation coefficients requires applying Fisher's z transfor-

mation to them and then transforming back the result (see, e.g., Mudhoklar, 1983). 

But here we used raw coefficients because we only wanted to show that the ρ val-

ue clearly correlates with the adjustment sign. 
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Fig. 5. Spearman’s 𝝆 coefficients showing the correlation between the improvement in 

accuracy and the actual demand value for each time series (relative frequency histo-

grams). 

 

 

Because of the division by the scale factor that is correlated with the numerator, 

the difference of APEs (which is calculated as 𝑑𝑖,𝑡
APE = 100 × (|𝑒𝑖,𝑡

f | − |𝑒𝑖,𝑡
s |) 𝑌𝑖,𝑡⁄  ) 

will not reflect changes in forecasting accuracy in terms of a symmetric loss func-

tion. More specifically, for positive adjustments, 𝑑𝑖,𝑡
APE will systematically down-

grade improvements in accuracy and exaggerate degradations of accuracy (on the 

percentage scale). In contrast, for negative adjustments, the improvements will be 

exaggerated, while the errors from harmful forecasts will receive smaller weights. 

Since the difference in MAPEs is calculated as the sample mean of 𝑑𝑖,𝑡
APE (in ac-

cordance with equation (1)), the comparison of forecasts using MAPE will also 

give a result which is biased towards underrating positive adjustments and overrat-

ing negative adjustments. Consequently, since the forecast errors arising from ad-

justments of different signs are penalised differently, the MAPE measure is flawed 

when comparing the performances of adjustments of different signs. One of the 

aims of the present research has therefore been to reinterpret the results of previ-

ous studies through the use of alternative measures. 

A second measure based on percentage errors was also used by Franses and 

Legerstee (2010). In order to evaluate the accuracy of improvements, the RMSPE 

(root mean square percentage error) was calculated for the statistical and judgmen-

tally adjusted forecasts, and the resulting values were then compared. Based on 

this measure, it was concluded that the expert adjusted forecasts were no better 

than the model forecasts. However, the RMSPE is also based on percentage errors, 

and is affected by the outliers and biases described above even more strongly. 
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3.2. Relative errors 

Another approach to obtaining scale-independent measures is based on using 

relative errors. The relative error (RE) is defined as 

 

𝑅𝐸𝑖,𝑡 = 𝑒𝑖,𝑡/𝑒𝑖,𝑡
b , 

 

where 𝑒𝑖,𝑡
b  is the forecast error obtained from a benchmark method. Usually a na-

ïve forecast is taken as the benchmark method. 

Well-known measures based on relative errors include Mean Relative Absolute 

Error (MRAE), Median Relative Absolute Error (MdRAE), and Geometric Mean 

Relative Absolute Error (GMRAE): 

 

MRAE = mean(|𝑅𝐸𝑖,𝑡|), 

MdRAE = median(|𝑅𝐸𝑖,𝑡|), 

GMRAE = gmean(|𝑅𝐸𝑖,𝑡|), 

 

where mean, median, and gmean respectively denote the sample mean, sample 

median, and the sample geometric mean over all possible values of 𝑖 and 𝑡. 

Averaging the ratios of absolute errors across individual observations over-

comes the problems related to dividing by actual values. In particular, the RE-

based measures are not affected by the presence of low actual values, or by the 

correlation between errors and actual outcomes. However, REs also have a num-

ber of limitations. 

The calculation of 𝑅𝐸𝑖,𝑡 requires division by the non-zero error of the bench-

mark forecast 𝑒𝑖,𝑡
b . In the case of calculating GMRAE, it is also required that 

𝑒𝑖,𝑡 ≠ 0. The actual and forecasted demands are usually count data, which means 

that the forecasting errors are count data as well. With count data, the probability 

of a zero error of the benchmark forecast can be non-zero. Such cases must be ex-

cluded from the analysis when using relative errors. When using intermittent de-

mand data, the use of relative errors becomes impossible due to the frequent oc-

currences of zero errors (Hyndman, 2006; Syntetos & Boylan, 2005). 

As was pointed out by Hyndman & Koehler (2006), in the case of continuous 

distributions, the benchmark forecast error 𝑒𝑖,𝑡
b  can have a positive probability den-

sity at zero, and therefore the use of MRAE can be problematic. In particular, 

𝑅𝐸𝑖,𝑡 can follow a heavy-tailed distribution for which the sample mean becomes a 

highly inefficient estimate that is vulnerable to outliers. In addition, the distribu-

tion of |𝑅𝐸𝑖,𝑡| is highly skewed. At the same time, while MdRAE is highly robust, 

it cannot be sufficiently informative, as it is insensitive to large REs which lie in 
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the tails of the distribution. Thus, even if the large REs are not outliers which arise 

from the division by relatively small benchmark errors, they still will not be taken 

into account when using MdRAE. Averaging the absolute REs using GMRAE is 

preferable to using either MRAE or MdRAE, as it provides a reliable and robust 

estimate and at the same time takes into account the values of REs which lie in the 

tails of the distribution. Also, when averaging the benchmark ratios, the geometric 

mean has the advantage that it produces rankings which are invariant to the choice 

of the benchmark (see Fleming & Wallace, 1986). 

Fildes (1992) recommends the use of the Relative Geometric Root Mean 

Square Error (RelGRMSE). The RelGRMSE for a particular time series 𝑖 is de-

fined as 

 

RelGRMSE𝑖 = (
∏ (𝑒𝑖,𝑡)

2
𝑡∈𝑇𝑖

∏ (𝑒𝑖,𝑡
b )

2
𝑡∈𝑇𝑖

)

1
2𝑛𝑖

, 

 

where 𝑇𝑖  is a set containing time periods for which non-zero errors 𝑒𝑖,𝑡 and 𝑒𝑖,𝑡
b  are 

available, and 𝑛𝑖 is the number of elements in 𝑇𝑖 . 

After obtaining the RelGRMSE for each series, Fildes (1992) recommends 

finding the geometric mean of the RelGRMSEs across all time series, thus obtain-

ing gmean(RelGRMSE𝑖). As Hyndman (2006) pointed out, the Geometric Root 

Mean Square Error (GRMSE) and the Geometric Mean Absolute Error (GMAE) 

are identical because the square roots cancel each other in a geometric mean. 

Similarly, it can be shown that 

 

gmean(RelGRMSE𝑖) = GMRAE. 

 

An alternative representation of GMRAE is: 

 

GMRAE = exp [
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ ∑ ln|𝑅𝐸𝑖,𝑡|
𝑡∈𝑇𝑖

𝑚

𝑖=1
], 

 

where 𝑚 is the total number of time series, and other variables retain their previ-

ous meaning. 

For the adjustments data set under consideration, only a small proportion of ob-

servations contain zero errors (about 1%). It has been found empirically that for 

the given data set the log-transformed absolute REs, ln|𝑅𝐸𝑖,𝑡|, can be approximat-

ed adequately using a distribution which has a finite variance. In fact, even if a 

heavy-tailed distribution of ln|𝑅𝐸𝑖,𝑡| arises, the influence of extreme cases can be 

eliminated based on various robustifying schemes such as trimming or Winsoriz-
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ing. In contrast to APEs, the use of such schemes for ln|𝑅𝐸𝑖,𝑡| is unlikely to lead 

to biased estimates, since the distribution of ln|𝑅𝐸𝑖,𝑡| is not highly skewed. 

Though GMRAE (or, equivalently, gmean(RelGRMSE𝑖)) has some desirable 

statistical properties and can give a reliable aggregated indication of changes in 

accuracy, its use can be complicated for the following two reasons. Firstly, as was 

mentioned previously, zero-error forecasts cannot be taken into account directly. 

Secondly, in a similar way to the median, the geometric mean of absolute errors 

generally does not reflect changes in accuracy under standard loss functions. For 

instance, for a particular time series, GMAE (and, hence, GMRAE) favours meth-

ods which produce errors with heavier tailed-distributions, while for the same se-

ries RMSE (root mean square error) can suggest the opposite ranking. 

The latter aspect of using GMRAE can be illustrated using the following ex-

ample. Suppose that for a particular time series, method A produces errors 𝑒𝑡
A that 

are independent and identically distributed variables following a heavy-tailed dis-

tribution. More specifically, let 𝑒𝑡
A follow the t-distribution with 𝜈 = 3 degrees of 

freedom: 𝑒𝑡
A ~ 𝑡𝜈. Also, let method B produce independent errors that follow the 

normal distribution: 𝑒𝑡
B ~ 𝑁(0, 3). Let method B be the benchmark method. It can 

be shown analytically that the variances for 𝑒𝑡
A and 𝑒𝑡

B are equal: Var(𝑒𝑡
A) =

Var(𝑒𝑡
B) = 3. Thus, the relative RMSE (RelRMSE, the ratio of the two RMSEs) 

for this series is 1. However, the Relative Geometric RMSE (or GMRAE) will 

show that method A is better than method B: GMRAE ≈ 0.69 (based on 106 simu-

lated pairs of 𝑒𝑡
A and 𝑒𝑡

B). Now if, for example, 𝑒𝑡
B ~ 𝑁(0, 2.5), then the RelRMSE 

and GMRAE will be 1.10 and 0.76, respectively. This means that method B is now 

preferable in terms of the variance of errors, while method A is still (substantially) 

better in terms of the GMRAE. However, the geometric mean absolute error is 

rarely used when optimising predictions with the use of mathematical models. 

Some authors claim that the comparison based on RelRMSE can be more desira-

ble, as in this case the criterion used for the optimisation of predictions corre-

sponds to the evaluation criteria (Zellner, 1986; Diebold, 1993). 

The above example has demonstrated that even for a single time series a statis-

tically significant improvement of GMRAE is not equivalent to a statistically sig-

nificant improvement in terms of RMSE. Analogously, it can be demonstrated that 

the GMRAE is not indicative of changes in terms of MAE. 

Thus, analogously to what was said with regard to PE-based measures, if the 

aim of the comparison is to choose a method that is better in terms of a linear or a 

quadratic loss, then GMRAE may not be sufficiently informative, or may even 

lead to counterintuitive conclusions. 
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3.3. Percent Better 

A simple approach to compare forecasting accuracy of methods A and B is to 

calculate the percentage of cases when method A was closer to the actual observa-

tion than method B. This measure is known as ‘Percent Better’ (further abbreviat-

ed as PB) and was recommended by some authors as a fairly good indicator (see, 

e.g., Armstrong & Collopy, 1992; Chatfield, 2001). It has the advantage of being 

immune to outliers and is scale-independent (it can therefore be used to assess ac-

curacy across series). In addition, it can be used for qualitative forecasts (but we 

will not look at this kind of forecasts in this paper). Although the measure seems 

to be easy to interpret, the following important limitations should be taken into ac-

count.  

One problem with PB is that it does not show the magnitude of changes in ac-

curacy (Hyndman & Koehler, 2006). Therefore, it becomes hard to assess the con-

sequences of using one method instead of another. Moreover, as was the case for 

the GMRAE, we can show that if shapes of error distributions are different for dif-

ferent methods, PB becomes non-indicative of changes in terms of a linear or 

quadratic loss even for a single series. 

Another problem arises when methods A and B frequently produce equal fore-

casts (e.g., this happens with intermittent demand data). In such situations, obtain-

ing a PB value that is lower than 50% is not necessarily a bad result, but without 

additional information we cannot draw any conclusions about the changes in accu-

racy. Suppose absolute errors for methods A and B can be approximated using the 

Poisson distribution: |𝑒𝑡
A| ~ Pois(𝜆 = 1) and |𝑒𝑡

B| ~ Pois(𝜆 = 3). Method A is 

much better than method B in terms of MAE: 𝐸[|𝑒𝑡
A|]/𝐸[|𝑒𝑡

B|] = 1/3, but 

𝑃(|𝑒𝑡
A| < |𝑒𝑡

B|) ≈ 0.077. Thus, the PB is, approximately, only 7.7 % – a figure 

that can be misleading. For this example, even looking at ‘Percent Worse’ and re-

lating it to the PB will also not give us an informative and easily interpretable in-

dication of accuracy. 

Thus, in spite of its apparent simplicity, the PB measure is often confusing and 

does not necessarily show changes in accuracy under linear loss. Moreover, it is 

not representative of the magnitude of changes and therefore it cannot ensure a 

complete and reliable analysis of accuracy. 

3.4. Scaled errors 

In order to overcome the imperfections of PE-based measures, Hyndman and 

Koehler (2006) proposed the use of the MASE (mean absolute scaled error). For 
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(2) 

the scenario when forecasts are produced from varying origins but with a constant 

horizon, the MASE is calculated as follows (see Appendix A): 

 

𝑞𝑖,𝑡 =
𝑒𝑖,𝑡

MAE𝑖
b

, MASE = mean(|𝑞𝑖,𝑡|), 

 

where 𝑞𝑖,𝑡 is the scaled error and MAE𝑖
b is the mean absolute error (MAE) of the 

naïve (benchmark) forecast for series 𝑖. 
Though this was not specified by Hyndman and Koehler (2006), it is possible 

to show (see Appendix A) that in the given scenario, the MASE is equivalent to 

the weighted arithmetic mean of relative MAEs, where the number of available 

values of 𝑒𝑖,𝑡 is used as the weight: 

 

MASE =
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑛𝑖

𝑚

𝑖=1
𝑟𝑖 ,    𝑟𝑖 =

MAE𝑖

MAE𝑖
b

, 

 

where 𝑚 is the total number of series, 𝑛𝑖 is the number of available values of 𝑒𝑖,𝑡 

for series 𝑖, MAE𝑖
b is the MAE of the benchmark forecast for series 𝑖, and MAE𝑖 is 

the MAE of the forecast being evaluated against the benchmark. 

It is known that the arithmetic mean is not strictly appropriate for averaging ob-

servations representing relative quantities, and in such situations the geometric 

mean should be used instead (Spizman & Weinstein, 2008). As a result of using 

the arithmetic mean of MAE ratios, equation (2) introduces a bias towards overrat-

ing the accuracy of a benchmark forecasting method. In other words, the penalty 

for bad forecasting becomes larger than the reward for good forecasting. 

To show how the MASE rewards and penalises forecasts, it can be represented 

as 

 

MASE = 1 +
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑛𝑖

𝑚

𝑖=1
(𝑟𝑖 − 1). 

 

The reward for improving the benchmark MAE from 𝐴 to 𝐵 (𝐴 > 𝐵) in a series 

𝑖 is 𝑅𝑖 = 𝑛𝑖(1 − 𝐵/𝐴), while the penalty for harming MAE by changing it from 𝐵 

to 𝐴  is 𝑃𝑖 = 𝑛𝑖(𝐴/𝐵 − 1). Since 𝑅𝑖 < 𝑃𝑖 , the reward given for improving the 

benchmark MAE cannot balance the penalty given for reducing the benchmark 

MAE by the same quantity. As a result, obtaining MASE > 1 does not necessarily 

indicate that the accuracy of the benchmark method was better on average. This 

leads to ambiguity in the comparison of the accuracy of forecasts. 

For example, suppose that the performance of some forecasting method is 

compared with the performance of the naïve method across two series (𝑚 = 2) 
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which contain equal numbers of forecasts and observations. For the first series, the 

MAE ratio is 𝑟1 = 1/2, and for the second series, the MAE ratio is the opposite: 

𝑟2 = 2/1. The improvement in accuracy for the first series obtained using the 

forecasting method is the same as the reduction for the second series. However, 

averaging the ratios gives MASE = ½ (𝑟1 + 𝑟2) = 1.25, which indicates that the 

benchmark method is better. While this is a well-known point, its implications for 

error measures, with the potential for misleading conclusions, are widely ignored. 

In addition to the above effect, the use of MASE (as for MAPE) may result in 

unstable estimates, as the arithmetic mean is severely influenced by extreme cases 

which arise from dividing by relatively small values. In this case, outliers occur 

when dividing by the relatively small MAEs of benchmark forecast which can ap-

pear in short series. 

Some authors (e.g., Hoover, 2006) recommend the use of the MAD/MEAN ra-

tio. In contrast to the MASE, the MAD/MEAN ratio approach assumes that the 

forecasting errors are scaled by the mean of time series elements, instead of by the 

in-sample MAE of the naïve forecast. The advantage of this scheme is that it re-

duces the risk of dividing by a small denominator (see Kolassa & Schutz, 2007). 

However, Hyndman (2006) notes that the MAD/MEAN ratio assumes that the 

mean is stable over time, which may make it unreliable when the data exhibit 

trends or seasonal patterns. In Section 5, we show that both the MASE and the 

MAD/MEAN are prone to outliers for the data set we consider in this paper. Gen-

erally, the use of these schemes has the risk of producing unreliable estimates that 

are based on highly skewed left-bounded distributions. 

Thus, while the use of the standard MAPE has long been known to be flawed, 

the newly proposed MASE also suffers from some of the same limitations, and 

may also lead to an unreliable interpretation of the empirical results. We therefore 

need a measure that does not suffer from these problems. The next section pre-

sents an improved statistic which is more suitable for comparing the accuracies of 

SKU-level forecasts. 

4. Recommended accuracy evaluation scheme 

4.1. Measuring the accuracy of judgmental adjustments 

The recommended forecast evaluation scheme is based on averaging the rela-

tive efficiencies of adjustments across time series. The geometric mean is the cor-

rect average to use for averaging benchmark ratio results, since it gives equal 

weight to reciprocal relative changes (Fleming & Wallace, 1986). Using the geo-
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metric mean of MAE ratios, it is possible to define an appropriate measure of the 

average relative MAE (AvgRelMAE). If the baseline statistical forecast is taken as 

the benchmark, then the AvgRelMAE showing how the judgmentally adjusted 

forecasts improve/reduce the accuracy can be found as 

 

 

AvgRelMAE = (∏ 𝑟𝑖
𝑛𝑖

𝑚

𝑖=1
)

1/ ∑ 𝑛𝑖
𝑚
𝑖=1

,   𝑟𝑖 =
MAE𝑖

f

MAE𝑖
s, 

 

where MAE𝑖
s is the MAE of the baseline statistical forecast for series 𝑖, MAE𝑖

f is 

the MAE of the judgmentally adjusted forecast for series 𝑖, 𝑛𝑖 is the number of 

available errors of judgmentally adjusted forecasts for series 𝑖, and 𝑚 is the total 

number of time series. This differs from the proposals of Fildes (1992), who ex-

amined the behaviour of the GRMSEs of the individual relative errors. 

 The MAEs in equation (3) are found as 

 

MAE𝑖
f =

1

𝑛𝑖

∑|𝑒𝑖,𝑡
f |

𝑡∈𝑇𝑖

, MAE𝑖
s =

1

𝑛𝑖

∑ |𝑒𝑖,𝑡
s |

𝑡∈𝑇𝑖

, 

 

where 𝑒𝑖,𝑡
f  is the error of the judgmentally adjusted forecast for period 𝑡 and series 

𝑖, 𝑇𝑖  is a set containing the time periods for which 𝑒𝑖,𝑡
f  are available, and 𝑒𝑖,𝑡

s  is the 

error of the baseline statistical forecast for period 𝑡 and series 𝑖. 
AvgRelMAE is immediately interpretable, as it represents the average relative 

value of MAE adequately, and directly shows how the adjustments im-

prove/reduce the MAE compared to the baseline statistical forecast. Obtaining 

AvgRelMAE < 1 means that on average MAE𝑖
f < MAE𝑖

s, and therefore adjust-

ments improve the accuracy, while AvgRelMAE > 1 indicates the opposite. The 

average percentage improvement in MAE of forecasts is found as (1 −
AvgRelMAE) × 100. If required, equation (3) can also be extended to other 

measures of dispersion or loss functions. For example, instead of MAE one might 

use the MSE (mean square error), interquartile range, or mean prediction interval 

length. The choice of the measure depends on the purposes of analysis. In this 

study, we use MAE, assuming that the penalty is proportional to the absolute er-

ror. 

Equivalently, the geometric mean of MAE ratios can be found as 

 

AvgRelMAE = exp (
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑛𝑖 ln 𝑟𝑖

𝑚

𝑖=1
). 

 

 

(3) 
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Therefore, obtaining ∑ 𝑛𝑖 ln 𝑟𝑖
𝑚
𝑖=1 < 0 means an average improvement of accu-

racy, and ∑ 𝑛𝑖 ln 𝑟𝑖
𝑚
𝑖=1 > 0 means the opposite. 

In theory, the following effect may complicate the interpretation of the 

AvgRelMAE value. If the distributions of errors 𝑒𝑖,𝑡
f  and 𝑒𝑖,𝑡

s  within a given series 𝑖 

have different levels of the kurtosis, then ln 𝑟𝑖 is a biased estimate of  ln(𝐸|𝑒𝑖,𝑡
f |/

𝐸|𝑒𝑖,𝑡
s |). Thus, the indication of an improvement under linear loss given by the 

AvgRelMAE may be biased. In fact, if 𝑛𝑖 = 1 for each 𝑖, then the AvgRelMAE 

becomes equivalent to the GMRAE, which has the limitations described in Section 

3.2. However, our experiments have shown that the bias of ln 𝑟𝑖 diminishes rapidly 

as 𝑛𝑖 increases, becoming negligible for 𝑛𝑖 > 4. 

To eliminate the influence of outliers and extreme cases, the trimmed mean can 

be used in order to define a measure of location for the relative MAE. The 

trimmed AvgRelMAE for a given threshold 𝑡 (0 ≤ 𝑡 ≤ 0.5) is calculated by ex-

cluding the [𝑡𝑚] lowest and [𝑡𝑚] highest values of 𝑛𝑖 ln 𝑟𝑖 from the calculations 

(square brackets indicate the integer part of 𝑡𝑚). As was mentioned in Section 2, 

the optimal trim level depends on the distribution. In practice, the choice of the 

trim level usually remains subjective, since the distribution is unknown. Wilcox 

(1996) wrote that ‘Currently there is no way of being certain how much trimming 

should be done in a given situation, but the important point is that some trimming 

often gives substantially better results, compared to no trimming’ (p. 16). Our ex-

periments show that a 5% level can be recommended for the AvgRelMAE meas-

ure. This level ensures high efficiency, because the underlying distribution usually 

does not exhibit very large departures from the normal distribution. A manual 

screening for outliers could also be performed in order to exclude time series with 

non-typical properties from the analysis. 

The results described in the next section show that the robust estimates ob-

tained using a 5% trimming level are very close to the estimates based on the 

whole sample. The distribution of 𝑛𝑖 ln 𝑟𝑖 is more symmetrical than the distribu-

tion of either the APEs or absolute scaled errors. Therefore, the analysis of the 

outliers in relative MAEs can be performed more efficiently than the analysis of 

outliers when using the measures considered previously. Besides, we can assess 

the statistical significance of changes in accuracy by testing the mean of 𝑛𝑖 ln 𝑟𝑖 

against zero. 

Since the AvgRelMAE does not require scaling by actual values, it can be used 

in cases of low or zero actuals, as well as in cases of zero forecasting errors. Con-

sequently, it is suitable for intermittent demand forecasts. The only limitation is 

that the MAEs in equation (3) should be greater than zero for all series. If zero 

MAEs do occur, they can be handled by the procedure that we describe below. 

Thus, the advantages of the recommended accuracy evaluation scheme are that 

it (i) can be interpreted easily, (ii) represents the performance of the adjustments 

objectively (without the introduction of substantial biases or outliers), (iii) is in-
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formative and uses available information efficiently, (iv) is applicable in a wide 

range of settings, with minimal assumptions about the features of the data, and (v) 

gives rankings and indicates relative improvements that are invariant to the choice 

of the benchmark. Importantly, the last property can be ensured only through the 

use of the geometric mean. If we used a sample median or sample mean instead, 

this could lead to different rankings depending on the choice of the benchmark. 

4.2. Generalized scheme for measuring the accuracy of point 

forecasts 

In general, in order to ensure a reliable evaluation of forecasting accuracy un-

der a symmetric linear loss, we recommend using the following scheme. Suppose 

we want to measure the accuracy of ℎ-step-ahead forecasts produced with some 

forecasting method A across 𝑚 time series. Firstly, we need to select a benchmark 

method. This, in particular, can be the naïve method. Let 𝑛𝑖 denote the number of 

periods for which both the ℎ-step-ahead forecasts and actual observations are 

available for series 𝑖. Then the accuracy measurement procedure is as follows: 

 

1. For each 𝑖 in 1 … 𝑚 

a. Calculate the relative MAE as 𝑟𝑖 =
MAE𝑖

A

MAE𝑖
B,  

where MAE𝑖
A and MAE𝑖

B denote out-of-sample h-step-ahead 

MAEs for method A and for the benchmark, respectively. 

 

b. Calculate the weighted log relative MAE as 𝑙𝑖 = 𝑛𝑖 ln 𝑟𝑖 . 

 

2. Calculate the Average Relative MAE as  

 

AvgRelMAE = exp (
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑙𝑖

𝑚

𝑖=1
) . 

 

If there is an evidence for a non-normal distribution of 𝑙𝑖, use the following 

procedure to ensure more efficient estimates: 

 

a. Find the indices of 𝑙𝑖 that correspond to the 5% of largest and 5% 

of lowest values. Let 𝑅 be a set that contains the remaining indi-

ces. 

 



 

Please cite this paper as: 

Davydenko, A., & Fildes, R. (2014). Measuring Forecasting Accuracy: Problems and Recom-

mendations (by the Example of SKU-Level Judgmental Adjustments). In Intelligent Fashion 

Forecasting Systems: Models and Applications (pp. 43-70). Springer Berlin Heidelberg. 

 

b. Calculate the trimmed version of the AvgRelMAE: 

 

AvgRelMAEtrimmed = exp (
1

∑ 𝑛𝑖𝑖∈𝑅

∑ 𝑙𝑖
𝑖∈𝑅

). 

 

3. Assess the statistical significance of changes by testing the mean of 𝑙𝑖 

against zero. For this purpose, the Wilcoxon’s one-sample signed rank test 

can be used (assuming that the distribution of 𝑙𝑖 is symmetric, but not nec-

essarily normal). If the distribution of 𝑙𝑖 is non-symmetric, the binomial 

test can be used to test the median of 𝑙𝑖 against zero. If the distribution has 

a negative skew then it is likely that the negative median will indicate neg-

ative mean as well. 

 

Notes: (a) For low volume data it can be the case that MAE𝑖
A = 0 or MAE𝑖

B = 0 

(or both). Essentially, MAE represents our estimate of the expected 

value of absolute error. But our prior knowledge suggests that the ex-

pected value of absolute error is larger than zero because for any fore-

casting task we assume that some level of uncertainty is present. There-

fore, obtaining a zero MAE is an inadequate result and we may use 

some sufficiently small number instead (say MAE=0.001). The extreme 

𝑟𝑖 values corresponding to such cases should then be excluded from the 

analysis on step 2 by setting a sufficiently large trim level. If the fre-

quency of obtaining zero MAEs is too high (say larger than 30%), a re-

liable estimation of the average relative MAE becomes unavailable, and 

we then have to resort to simply estimating the success rate for the 

MAE improvement. This can be done by calculating the number of cas-

es when MAE𝑖
A < MAE𝑖

B, 𝑖 = 1 … , 𝑚, and then dividing this number by 

the total number of time series, 𝑚. Importantly, as mentioned in Section 

3.3, getting a success rate that is statistically lower than 0.5 does not 

necessarily indicate that method A is worse than method B for count da-

ta (because of the possibility of equal MAEs); therefore the sum of 

ranks should be reported as well. But it is also important to keep in 

mind that neither the success rate nor the sum of ranks will be indica-

tive of improvements under linear loss if sampling distribution for 𝑙𝑖 is 

heavily skewed. 

 

         (b) If distribution of absolute errors is heavily skewed, the MAE, as any 

sample mean, becomes a very inefficient estimate of the expected value 

of absolute error. One simple method to improve the efficiency of the 

estimates while not introducing substantial bias is to use asymmetric 

trimming algorithms, such as those described by (Alkhazeleh and 
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Razali, 2010). However, further discussions on this topic are outside the 

scope of our paper. 

 

         (c) If a suitable benchmark method is unavailable, we can use the sample 

mean of time series values instead of the benchmark MAE. The proce-

dure then becomes similar to the MAD/MEAN ratio approach described 

in Section 3.4, but here the use of the geometric mean i) ensures the 

correct averaging of ratios (i.e., deviations from the mean will be treat-

ed symmetrically) and ii) gives more robust measurement results in 

cases when mean time series values are relatively small compared to 

absolute forecasting errors. 

 

         (d) In step 2, the optimal trim level depends on the shape of the distribution 

of 𝑙𝑖. Our experiments suggest that, for the distributions that are likely 

to be obtained, the efficiency of the trimmed mean is not highly sensi-

tive to the choice of the trim level and any value between 2% and 10% 

gives reasonably good results. Generally, as was shown by (Andrews et 

al., 1972), when the underlying distribution is symmetrical and heavy-

tailed relative to the Gaussian, the variance of the trimmed mean is 

quite a lot smaller than the variance of the sample mean. Therefore, the 

use of the trimmed means for symmetrical distributions can be highly 

recommended. 

5. Results of empirical evaluation 

The results of applying the measures described above are shown in Table 3. 

For the given dataset, a large number of APEs have extreme values (>100%) 

which arise from low actual demand values (Fig. 6). Following Fildes et al. 

(2009), we used a 2% trim level for MAPE values. However, as noted, it is diffi-

cult to determine an appropriate trim level. As a result, the difference in APEs be-

tween the system and final forecasts has a very high dispersion and cannot be used 

efficiently to assess improvements in accuracy. It can also be seen that the distri-

bution of APEs is highly skewed, which means that the trimmed means cannot be 

considered as unbiased estimates of the location. Albeit the distribution of the 

APEs has a very high kurtosis, our experiments show that increasing the trim level 

(say from 2% to 5%) would substantially bias the estimates of the location of the 

APEs due to the extremely high skewness of the distribution. We therefore use the 

2% trimmed MAPE in this study. Also, the use of this trim level makes the meas-

urement results comparable to the results of Fildes et al. (2009). 
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Table 3: Accuracy of adjustments according to different error measures 

 

Error measure 

Positive adjustments Negative adjustments All nonzero adjustments 

Statistical 

forecast 

Adjusted 

forecast 

Statistical 

forecast 

Adjusted 

forecast 

Statistical 

forecast 

Adjusted 

forecast 

MAPE, % 

(untrimmed) 
38.85 61.54 70.45 45.13 47.88 56.85 

MAPE, % 

(2 % trimmed) 
30.98 40.56 48.71 30.12 34.51 37.22 

MdAPE, % 25.48 20.65 23.90 17.27 24.98 19.98 

GMRAE 1.00 0.93 1.00 0.70 1.00 0.86 

GMRAE 

(5 % trimmed) 
1.00 0.94 1.00 0.71 1.00 0.87 

MASE 0.97 0.97 0.95 0.70 0.96 0.90 

Mean (MAD/Mean) 0.37 0.42 0.33 0.24 0.36 0.37 

Mean (MAD/Mean) 

(5 % trimmed) 
0.34 0.35 0.29 0.21 0.33 0.31 

AvgRelMAE 1.00 0.96 1.00 0.71 1.00 0.90 

AvgRelMAE 

(5 % trimmed) 
1.00 0.96 1.00 0.73 1.00 0.89 

Avg. improvement based 

on AvgRelMAE 
0.00 0.04 0.00 0.29 0.00 0.10 

 

 

 

 
 

Fig. 6. Box-and-whisker plot for absolute percentage errors (log scale, zero-error fore-

casts excluded). 

 

Table 3 shows that the rankings based on the trimmed MAPE and MdAPE dif-

fer, suggesting different conclusions about the effectiveness of adjustments. As 

was explained in Section 3.1, the interpretation of PE-based measures is not 

straightforward. While MdAPE is resistant to outliers, it is not sufficiently in-
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formative, as it is insensitive to APEs which lie above the median. Also, PE-

measures produce a biased comparison, since the improvement on the real scale 

within each series is correlated markedly with the actual value. Therefore, apply-

ing percentage errors in the current setting leads to ambiguous results and to con-

fusion in their interpretation. For example, for positive adjustments, the trimmed 

MAPE and MdAPE suggest the opposite rankings: while the trimmed MAPE 

shows a substantial worsening of the final forecast due to the judgmental adjust-

ments, the MdAPE value points in the opposite direction. 

The absolute scaled errors found using the MASE scheme (as described in Sec-

tion 3.4) also follow a non-symmetrical distribution and can take extremely large 

values (Fig. 7) in short series where the MAE of the naïve forecast is smaller than 

the error of judgmental forecast. For the adjustments data, the lengths of the series 

vary substantially, so the MASE is affected seriously by outliers. Fig. 8 shows that 

the use of the MAD/MEAN scheme instead of the MASE does not improve the 

properties of the distribution of the scaled errors. Table 3 shows that a trimmed 

version of the MAD/MEAN scheme gives the opposite rankings with regard to the 

overall accuracy of adjustments, which indicates that this scheme is highly unsta-

ble. Moreover, with such distributions, the use of trimming for either MASE or 

MAD/MEAN leads to biased estimates, as was the case with MAPE. 

 

 

 
 

Fig. 7. Box-and-whisker plot for the absolute scaled errors found by the MASE 

scheme (log scale, zero-error forecasts excluded). 

 

 
 

Fig. 8. Box-and-whisker plot for absolute scaled errors found by the MAD/MEAN 

scheme (log scale, zero-error forecasts excluded). 
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Fig. 9 shows that the log-transformed relative absolute errors follow a symmet-

ric distribution and contain outliers that are easier to detect and to eliminate. Based 

on the shape of the underlying distribution, it seems that using a 5% trimmed 

GMRAE would give a location estimate with a reasonable level of efficiency. Alt-

hough the GMRAE measure is not vulnerable to outliers, its interpretation can 

present difficulties, for the reasons explained in Section 3.2. 

 

 
 

Fig. 9. Box-and-whisker plot for the log-transformed relative absolute errors (using 

the statistical forecast as the benchmark). 

 

 

Compared to the APEs and the absolute scaled errors, the log-transformed rela-

tive MAEs are not affected severely by outliers and have a more symmetrical dis-

tribution (Fig. 10). The AvgRelMAE can therefore serve as a more reliable indica-

tor of changes in accuracy. At the same time, in terms of a linear loss function the 

AvgRelMAE scheme represents the effectiveness of adjustments adequately and 

gives a directly interpretable meaning. 

 

 
Fig. 10. Box-and-whisker plot for the weighted log-transformed relative MAEs 

(𝑛𝑖 ln 𝑟𝑖). 

 

The AvgRelMAE result shows improvements from both positive and negative 

adjustments, whereas according to MAPE and MASE, only negative adjustments 

improve the accuracy. For the whole sample, adjustments improve the MAE of 

statistical forecast by 10%, on average. Positive adjustments are less accurate than 

negative adjustments and provide only minor improvements. To assess the signifi-

cance of changes in accuracy in terms of MAE, we applied the two-sided Wilcox-

on test to test the mean of the weighted relative log-transformed MAEs against ze-

ro. The p-value was less than 0.01 for the set containing the adjustments of both 
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signs, less than 0.05 for the set containing only positive adjustments, and less than 

2.2 ∙ 10−16 for the set containing only negative adjustments. 

To determine whether the probability of a successful adjustment is higher than 

0.5, the two-sided binomial test was applied. The results are shown in Table 4. 

 

 

Table 4: Results of using the binomial test to analyse the frequency of a successful adjust-

ment. 

 

Adjust-

just-

ment 

sign 

Total 

number 

of ad-

justments 

Number of 

adjustments 

that improved 

forecast 

p-value Probabil-

ity of a 

successful 

adjust-

ment 

95% confidence 

interval for the 

probability of a 

successful ad-

justment 

Positive 3394 1815 <0.001 0.535 0.518 0.552 

Negative 1385 915 <0.001 0.661 0.635 0.686 

Both 4779 2730 <0.001 0.571 0.557 0.585 

 

Based on the p-values obtained for each sample, it can be concluded that ad-

justments improved the accuracy of forecasts more frequently than they reduced it. 

However, the probability of a successful intervention was rather low for positive 

adjustments. 

6. Conclusions 

The appropriate measurement of forecasting accuracy is important in many or-

ganizational settings, and is not of merely academic interest. Where an inappropri-

ate error measure is used the consequences can be the adoption of a poor forecast-

ing process. In addition forecasters can be rewarded or penalized (appropriately or 

not) for their performance and this is evaluated through the organization’s choice 

of error measure. Due to the specific features of SKU-level demand data, many 

well-known error measures are not appropriate for use in evaluating the effective-

ness of adjustments. This is especially true for fast-moving fashionable products. 

In particular, the use of percentage errors is not advisable because of the consider-

able proportion of low actual values, which lead to high percentage errors with no 

direct interpretation for practical use. Moreover, the errors corresponding to ad-

justments of different signs are penalised differently when using percentage errors, 

because the forecasting errors are correlated with both the actual demand values 
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and the adjustment sign. As a result, measures such as MAPE and MdAPE do not 

provide sufficient indication of the effectiveness of adjustments, in terms of a lin-

ear loss function. Similar arguments were also found to apply to the calculation of 

MASE, which can also induce biases and outliers as a result of using the arithme-

tic mean to average relative quantities. Thus, an organization which determines its 

forecast improvement strategy based on an inadequate measure will misallocate its 

resources, and will therefore fail in its objective of improving the accuracy at the 

SKU level. 

In order to overcome the disadvantages of existing measures, it is recommend-

ed that an average relative MAE be used which is calculated as the geometric 

mean of relative MAE values. This scheme allows for the objective comparison of 

forecasts, and is more reliable for the analysis of adjustments. 

For the empirical dataset, the analysis has shown that adjustments improved 

accuracy in terms of the average relative MAE (AvgRelMAE) by approximately 

10%. For the same dataset, a range of well-known error measures, including 

MAPE, MdAPE, GMRAE, MASE, and the MAD/MEAN ratio, indicated conflict-

ing results. The MAPE-based results suggested that, on the whole, adjustments did 

not improve the accuracy, while the MdAPE results showed a substantial im-

provement (dropping from 25% to 20%, approximately). The analysis using 

MASE and the MAD/MEAN ratio was complicated, due to a highly skewed un-

derlying distribution, and did not allow any firm conclusions to be reached. The 

GMRAE showed that adjustments improved the accuracy by 13%, a result that is 

close to that one obtained using the AvgRelMAE. Since analyses based on differ-

ent measures can lead to different conclusions, it is important to have a clear un-

derstanding of the statistical properties of any error measure used. We have de-

scribed various undesirable effects that complicate the interpretation of the well-

known error measures. As an improved scheme which is appropriate for evaluat-

ing changes in accuracy under linear loss, we recommend using the AvgRelMAE. 

The generalisation of this scheme can be obtained straightforwardly for other loss 

functions as well. 

One question that arises after the analysis of the accuracy of judgmental ad-

justments is whether or not these adjustments are systematically biased and can we 

improve them using some statistical calibration. A number of studies have been 

now conducted to address these questions (see, e.g., Davydenko and Fildes, 2008; 

Fildes et al., 2009; Franses and Legerstee, 2010; Trapero, Fildes, and Davydenko, 

2011) and it has been found that judgmental adjustments do contain persistent sys-

tematic errors. Albeit this topic is outside the scope of the current paper, but, of 

course, we think that any study of procedures for the correction of judgmental 

forecasts should contain thorough analysis of accuracy based on appropriate and 

well-justified error measures. 
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The process by which a new error measure is developed and accepted by an or-

ganisation has not received any research attention. A case in point is intermittent 

demand, where service improvements can be achieved, but only by abandoning 

the standard error metrics and replacing them with service-level objectives (Synte-

tos & Boylan, 2005). When an organisation and those to whom the forecasting 

function reports insist on retaining MAPE or similar (as will mostly be the case), 

the forecaster’s objective must then shift to delivering to the organisation’s chosen 

performance measure, whilst using a more appropriate measure, such as the 

AvgRelMAE, to interpret what is really going on with the data. In essence, the 

forecaster cannot reasonably resort to using the organisation’s measure and expect 

to achieve a cost-effective result.  
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Appendix A. Alternative representation of MASE 

According to Hyndman and Koehler (2006), for the scenario when forecasts are 

made from varying origins but with a constant horizon (here taken as 1), the 

scaled error is defined as
3
 

 

𝑞𝑖,𝑡 =
𝑒𝑖,𝑡

MAE𝑖
b

 , MAE𝑖
b =

1

𝑙𝑖 − 1
∑ |𝑌𝑖,𝑗 − 𝑌𝑖,𝑗−1|

𝑙𝑖

𝑗=2

, 

 

where MAE𝑖
b is the MAE from the benchmark (naïve) method for series 𝑖, 𝑒𝑖,𝑡 is 

the error of a forecast being evaluated against the benchmark for series 𝑖 and peri-

od 𝑡, 𝑙𝑖 is the number of elements in series 𝑖, and 𝑌𝑖,𝑗 is the actual value observed 

at time 𝑗 for series 𝑖. 
Let the mean absolute scaled error (MASE) be calculated by averaging the ab-

solute scaled errors across time periods and time series: 

 

MASE =
1

∑ 𝑛𝑖
𝑚
𝑖=1

∑ ∑
|𝑒𝑖,𝑡|

MAE𝑖
b

𝑡∈𝑇𝑖

𝑚

𝑖=1

, 

 

where 𝑛𝑖 is the number of available values of 𝑒𝑖,𝑡 for series 𝑖, 𝑚 is the total num-

ber of series, and 𝑇𝑖  is a set containing time periods for which the errors 𝑒𝑖,𝑡 are 

available for series 𝑖. 
Then, 
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3 The formula corresponds to the software implementation described by 

Hyndman and Khandakar (2008). 
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=
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∑ 𝑛𝑖
𝑚
𝑖=1

∑ 𝑛𝑖𝑟𝑖

𝑚

𝑖=1

,   𝑟𝑖 =
MAE𝑖

MAE𝑖
b

, 

 

where MAE𝑖 is the MAE for series 𝑖 for the forecast being evaluated against the 

benchmark. 
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